Synlett 2024; 35(03): 245-267
DOI: 10.1055/a-2122-8508
account
Organic Chemistry Under Visible Light: Photolytic and Photocatalytic Organic Transformations

Recent Developments in Photocatalytic Reduction of Nitro Compounds to Valuable Scaffolds

Varun Aggarwal
a   School of Advanced Chemical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, HP, 173229, India
,
Ekta Bala
a   School of Advanced Chemical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, HP, 173229, India
,
Saima Saima
a   School of Advanced Chemical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, HP, 173229, India
,
Sameer Pathan
a   School of Advanced Chemical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, HP, 173229, India
,
Saksham Guleria
a   School of Advanced Chemical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, HP, 173229, India
,
Sakshi Sharma
a   School of Advanced Chemical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, HP, 173229, India
,
Manickam Selvaraj
b   Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
c   Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
,
a   School of Advanced Chemical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, HP, 173229, India
d   Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai, Tamil Nadu, 600077, India
› Author Affiliations
V. A. and P. K. V. are thankful to the Himachal Pradesh Council for Science, Technology and Environment (HIMCOSTE) for providing the research grant (HIMCOSTE (R&D) 2021-22:2.4(27)). The authors extend their appreciation to the research unit at King Khalid University for funding this work through Project number 487/44 and the authors acknowledge the Research Center for Advance Materials (RCAMS) at King Khalid University, Saudi Arabia for their valuable technical support.


Abstract

The reduction of nitro compounds is one of the fundamental organic transformations and ascertain wide applicability in industrial chemistry, synthesis of valuable scaffolds, fine chemical synthesis, as well as environmental applicability for decontamination process. The transformation involves the conversion of nitro compounds into valuable scaffolds including amino, nitroso, hydroxyl amines, azo, and hydrazo compounds. Conventional approaches for the reduction of nitro compounds involves the environmentally harmful stoichiometric reagents, high-boiling reaction media, tedious processes, and harsh reaction conditions with high temperature and pressure. Additionally, the selectivity always remains a serious concern associated with the process due to the possibilities of several stable intermediate formation in the reaction pathway of reduction of nitro compounds. Nitro compounds are also of serious environmental concerns being a part of most harmful and high-priority classes of pollutants mainly released from industrial effluents, agricultural waste, and human sewage. A simple degradation of these pollutants bearing nitro group just removes the pollutants, however, the selective reduction of nitro group to valuable functionalities as mentioned above provides the industrially important scaffolds. With the advent of photocatalytic organic transformation, most of the scientific fraternity working in the area of organic synthesis, catalysis, and environmental decontaminations are utilizing the clean, green, low-temperature, energy and cost-effective, sustainable processes for the reduction of nitro compounds to access valuable scaffolds. Nowadays a lot of mechanistic developments in the field ease the processes for the developments of such highly valuable organic transformations. Herein, the present Account is focused on the recent developments in the photocatalytic reduction of nitro compounds to valuable scaffolds.

1 Introduction

2 Reduction of Nitro Compounds

2.1 Conventional Approaches for Reduction of Nitro Compounds

2.2 General Photocatalytic Mechanism

3 Mechanistic Pathways: Electrochemical, Conventional and Photocatalytic Approaches

3.1 Mechanism of Electrochemical Reduction of Nitroarene

3.2 Conventional Reduction Mechanism of Nitroarenes

3.3 General Photocatalytic Reduction Mechanism of Nitroarenes

4 Photocatalytic Reduction of Nitro Compounds to Valuable Scaffolds

4.1 Reduction of Nitro Compounds to Corresponding Amines

4.2 Reduction of Nitro Compounds to Azo Compounds

4.3 Reduction of Nitro Compounds to Azoxy Compounds

4.4 Reduction of Nitro Compounds to Nitroso Compounds

4.5 Reduction of Nitro Compounds to Hydroxyl Amines

5 Future Perspective

6 Conclusion



Publication History

Received: 31 May 2023

Accepted after revision: 04 July 2023

Accepted Manuscript online:
04 July 2023

Article published online:
04 September 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Nishiwaki N. Molecules 2020; 25: 3680
  • 2 Ono N. The Nitro Group in Organic Synthesis. Wiley-VCH; Weinheim: 2001: 159-181
  • 3 Yang XJ, Chen B, Zheng LQ, Wu LZ, Tung CH. Green Chem. 2014; 16: 1082
  • 4 Mąkosza M. Chem. Eur. J. 2014; 20: 5536
  • 5 Mąkosza M. Synthesis 2017; 49: 3247
  • 6 Zheng PF, An Y, Jiao ZY, Shi ZB, Zhang FM. Curr. Org. Chem. 2019; 23: 1560
  • 7 Ballini R, Araujo N, Gil MV, Roman E, Serrano JA. Chem. Rev. 2013; 113: 3493
  • 8 Sukhorukov AY, Sukhanova AA, Zlotin SG. Tetrahedron 2016; 72: 6191
  • 9 Asahara H, Sofue A, Kuroda Y, Nishiwaki N. J. Org. Chem. 2018; 83: 13691
  • 10 Rocard L, Goujon A, Hudhomme P. Molecules 2020; 25: 1402
  • 11 Nepali K, Lee HY, Liou JP. J. Med. Chem. 2018; 62: 2851
  • 12 Nasrollahzadeh M, Nezafat Z, Gorab MG, Sajjadi M. Mol. Catal. 2020; 484: 110758
  • 13 Kumar PS, Lokanatha Rai KM. Chem. Pap. 2012; 66: 772
  • 14 Subudhi S, Rath D, Parida K. Catal. Sci. Technol. 2018; 8: 679
    • 15a Verma PK, Sawant SD. Coord. Chem. Rev. 2022; 450: 214239
    • 15b Verma R, Jing Y, Liu H, Aggarwal V, Goswami HK, Bala E, Ke Z, Verma PK. Eur. J. Org. Chem. 2022; e202200298
    • 15c Kour J, Khajuria P, Verma PK, Kapoor N, Kumar A, Sawant SD. ACS Omega 2022; 7: 13000
    • 15d Dutta V, Sonu, Raizada P, Verma PK, Ahamad T, Thakur S, Hussain CM, Singh P. Mater. Lett. 2022; 320: 132374
    • 15e Dutta V, Sonu, Raizada P, Thakur VK, Ahamad T, Thakur S, Verma PK, Quang HH. P, Nguyen VH, Singh P. Environ. Sci. Pollut. Res. 2022; in press; doi.org/10.1007/s11356 022-20743-8
    • 15f Bag D, Verma PK, Sawant SD. Chem. Asian J. 2020; 15: 3225
    • 15g Balgotra S, Verma PK, Vishwakarma RA, Sawant SD. Catal. Rev. 2020; 62: 406
    • 15h Kour J, Venkateswarlu V, Verma PK, Hussain Y, Dubey G, Bharatam PV, Sahoo SC, Sawant SD. J. Org. Chem. 2020; 85: 4951
    • 15i Verma PK, Vishwakarma RA, Sawant SD. Asian J. Org. Chem. 2019; 8: 777
    • 15j Hudwekar AD, Verma PK, Kour J, Balgotra S, Sawant SD. Eur. J. Org. Chem. 2019; 1242
    • 15k Venkateswarlu V, Kour J, Aravinda Kumar KA, Verma PK, Reddy GL, Hussain Y, Tabassum A, Balgotra S, Gupta S, Hudwekar AD, Vishwakarma RA, Sawant SD. RSC Adv. 2018; 8: 26523
    • 15l Balgotra S, Verma PK, Kour J, Gupta S, Vishwakarma RA, Sawant SD. ChemistrySelect 2018; 3: 2800
    • 15m Srinivas M, Pathania AS, Mahajan P, Verma PK, Chobe SS, Malik FA, Nargotra A, Vishwakarma RA, Sawant SD. Bioorg. Med. Chem. Lett. 2018; 28: 1005
    • 15n Hudwekar AD, Reddy GL, Verma PK, Gupta S, Vishwakarma RA, Sawant SD. ChemistrySelect 2017; 2: 4963
    • 15o Bala M, Verma PK, Kumar N, Singh B. Synth. Commun. 2015; 45: 847
    • 15p Bala M, Verma PK, Sharma D, Kumar N, Singh B. Mol. Diversity 2015; 19: 263
    • 15q Sharma R, Bala M, Verma PK, Singh B. Synth. Commun. 2015; 45: 2106
    • 15r Kumar V, Singh C, Sharma U, Verma PK, Singh B, Kumar N. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 2014; 53: 83
    • 15s Bala M, Verma PK, Sharma U, Kumar N, Singh B. Green Chem. 2013; 15: 1687
    • 15t Verma PK, Kumar N, Sharma U, Bala M, Kumar V, Singh B. Synth. Commun. 2013; 43: 2867
    • 15u Bala M, Verma PK, Kumar N, Sharma U, Singh B. Can. J. Chem. 2013; 91: 732
    • 15v Sharma U, Kumar N, Verma PK, Kumar V, Singh B. Green Chem. 2012; 14: 2289
    • 15w Kumar V, Sharma U, Verma PK, Kumar N, Singh B. Adv. Synth. Catal. 2012; 354: 870
    • 15x Verma PK, Sharma U, Bala M, Kumar N, Singh B. RSC Adv. 2012; 3: 895
    • 15y Verma PK, Sharma U, Kumar N, Bala M, Kumar V, Singh B. Catal. Lett. 2012; 142: 907
    • 15z Sharma U, Kumar P, Kumar N, Kumar V, Singh B. Adv. Synth. Catal. 2010; 352: 1834
    • 16a Pandarus V, Ciriminna R, Béland F, Pagliaro M. Adv. Synth. Catal. 2011; 353: 1306
    • 16b Mikami Y, Noujima A, Mitsudome T, Mizugaki T, Jitsukawa K, Kaneda K. Chem. Lett. 2010; 39: 223
    • 16c Cardenas-Lizana F, Gomez-Quero S, Keane MA. Catal. Commun. 2008; 9: 475
  • 17 Corma A, Concepción P, Serna P. Angew. Chem. Int Ed. 2007; 46: 7266
  • 18 Zhang F, Zhao C, Chen S, Li H, Yang H, Zhang XM. J. Catal. 2017; 348: 212
    • 19a Tsukinoki T, Tsuzuki H. Green Chem. 2001; 3: 37
    • 19b Sreedhar B, Devi DK, Yada D. Catal. Commun. 2011; 12: 1009
    • 19c Mohan V, Pramod CV, Suresh M, Reddy KH. P, Raju BD, Rao KR. Catal. Commun. 2012; 18: 89
  • 20 Ellis F. Paracetamol - a curriculum resource. Royal Society of Chemistry; London: 2002: 3-12
  • 21 See WA, Tyrrell CJ, Group CE. P. C. T. J. Cancer Res. Clin. Oncol. 2006; 132: 7
    • 22a Li Z, Xu M, Xing S, Ho WT, Ishii T, Li Q, Fu X, Zhao ZJ. J. Biol. Chem. 2007; 282: 3428
    • 22b Dudek AZ, Lesniewski-Kmak K, Koopmeiners J, Keshtgarpour M. Lung Cancer 2006; 51: 89
    • 23a Baumeister P, Blaser H, Scherrer W. Stud. Surf. Sci. Catal. 1991; 59: 321
    • 23b Xu DQ, Hu ZY, Li WW, Luo SP, Xu ZY. J. Mol. Catal. A: Chem. 2005; 235: 137
    • 23c Wu G, Huang M, Richards M, Poirier M, Wen X, Draper RW. Synthesis 2003; 1657
    • 24a Zhao P, Feng X, Huang D, Yang G, Astruc D. Coord. Chem. Rev. 2015; 287: 114
    • 24b Lara P, Philippot K. Catal. Sci. Technol. 2014; 4: 2445
    • 25a Kadam HK, Khan S, Kunkalkar RA, Tilve SG. Tetrahedron Lett. 2013; 54: 1003
    • 25b Kadam HK, Tilve SG. RSC Adv. 2012; 2: 6057
    • 25c Vernekar AA, Patil S, Bhat C, Tilve SG. RSC Adv. 2013; 3: 13243
  • 26 Sharma U, Verma PK, Kumar N, Kumar V, Bala M, Singh B. Chem. Eur. J. 2011; 17: 5903
  • 27 Verma PK, Bala M, Thakur K, Sharma U, Kumar N, Singh B. Catal. Lett. 2014; 144: 1258
  • 28 Ameta R, Solanki MS, Benjamin S, Ameta SC. In Advanced Oxidation Processes for Waste Water Treatment . Ameta SC, Ameta R. Elsevier; Amsterdam: 2018. 1. 35
    • 29a Verma PK. Coord. Chem. Rev. 2022; 472: 214805
    • 29b Yang X, Wang D. Energy Mater. 2018; 1: 6657
  • 30 Eibner A. Chem.-Ztg. 1911; 35: 753
  • 31 Eskandari P, Kazemi F, Zand Z. J. Photochem. Photobiol., A 2014; 274: 7
  • 32 Markushyna Y, Völkel A, Savateev A, Antonietti M, Filonenko S. J. Catal. 2019; 386: 186
    • 33a Wirtanen T, Rodrigo E, Waldvogel SR. Adv. Synth. Catal. 2020; 362: 2088
    • 33b Shi C, Zhang W, Birke RL, Gosser DK. Jr, Lombardi JR. J. Phys. Chem. A 1991; 95: 6276
  • 34 Zhao LB, Huang YF, Liu XM, Anema JR, Wu DY, Ren B, Tian ZQ. Phys. Chem. Chem. Phys. 2012; 14: 12919
  • 35 Gao P, Gosztola D, Weaver MJ. J. Phys. Chem. 1988; 92: 7122
  • 36 Marquez J, Pletcher D. J. Appl. Electrochem. 1980; 10: 567
  • 37 Zuman P, Fijalek Z, Dumanovic D, Sužnjević D. Electroanalysis 1992; 4: 783
  • 38 Haber F. Z. Elektrochem. 1898; 4: 506
  • 39 Zuman P, Fijalek Z. J. Electroanal. Chem. Interfacial Electrochem. 1990; 296: 583
  • 40 Gelder EA, Jackson SD, Lok CM. Chem. Commun. 2005; 522
  • 41 Castañeda C, Alvarado I, Martínez JJ, Brijaldo MH, Passos FB, Rojas H. J. Chem. Technol. Biotechnol. 2019; 94: 2630
  • 42 Ix LA. M, Gonzalez AE, Cipagauta-Diaz S, Gomez R. J. Chem. Technol. Biotechnol. 2020; 95: 2694
  • 43 Zhao X, Liu X, Yi C, Li J, Su Y, Guo M. ACS Appl. Nano Mater. 2020; 3: 6574
  • 44 Patzsch J, Berg B, Bloh JZ. Front. Chem. 2019; 7: 289
  • 45 Vishwanathan V, Jayasri V, Basha PM, Mahata N, Sikhwivhilu L, Coville NJ. Catal. Commun. 2008; 9: 453
  • 46 Wang X, Liang M, Zhang J, Wang Y. Curr. Org. Chem. 2007; 11: 299
  • 47 Mohamed MM, Al-Sharif MS. Appl. Catal., B 2013; 142: 432
  • 48 Rahman A, Jonnalagadda SB. Catal. Lett. 2008; 123: 264
  • 49 Saha A, Ranu B. J. Org. Chem. 2008; 73: 6867
  • 50 Azad R, Bezaatpour A, Amiri M, Eskandari H, Nouhi S, Taffa DH, Wark M, Boukherroub R, Szunerits S. Appl. Organomet. Chem. 2019; 33: e5059
  • 51 Nguyen HG. T, Schweitzer NM, Chang CY, Drake TL, So MC, Stair PC, Farha OK, Hupp JT, Nguyen ST. ACS Catal. 2014; 4: 2496
  • 52 Remya VR, Kurian M. Int. Nano Lett. 2019; 17
  • 53 Abdelhameed RM, El-Shahat M, Emam HE. Carbohydr. Polym. 2020; 247: 116695
  • 54 Shown I, Samireddi S, Chang YC, Putikam R, Chang PH, Sabbah A, Fu FY, Chen WF, Wu CI, Yu TY, Chung PW, Lin MC, Chen LC, Chen KH. Nat. Commun. 2018; 9: 169
  • 55 Liu M, Wang R, Liu B, Guo F, Tian L. J. Colloid Interface Sci. 2019; 555: 423
  • 56 Todorov AR, Aikonen S, Muuronen M, Helaja J. Org. Lett. 2019; 21: 3764
  • 57 Berman J, Brown T, Dow G, Toovey S. Malar. J. 2018; 407: 1
  • 58 Shuwanto H, Gultom NS, Abdullah H, Kuo DH. ACS Appl. Energy Mater. 2020; 3: 12692
  • 59 Abdullah H, Gultom NS, Shuwanto H, Kebede WL, Kuo D.-H. ACS Appl. Mater. Interfaces 2020; 12: 43761
  • 60 Zhao X, Liu X, Yi C, Li J, Su Y, Guo M. ACS Appl. Nano Mater. 2020; 3: 6574
  • 61 Kumar AS. K, You JG, Tseng WB, Dwivedi GD, Rajesh N, Jiang SJ, Tseng WL. ACS Sustainable Chem. Eng. 2019; 7: 6662
  • 62 Ibrahim S, Pal T, Ghosh S. New J. Chem. 2019; 43: 10118
  • 63 Sahoo M, Mansingh S, Parida KM. J. Mater. Chem. A 2019; 7: 7614
  • 64 Jia WG, Cheng MX, Gao LL, Tan SM, Wang C, Liu X, Lee R. Dalton Trans. 2019; 48: 9949
  • 65 Melillo A, García-Vallés C, Ferrer B, Álvaro M, Navalón S, García H. Org. Biomol. Chem. 2021; 19: 794
  • 66 Xu S, Huang MH, Li T, Wei ZQ, Lin X, Dai XC, Hou S, Fu XY, Xiao FX. J. Mater. Chem. A 2020; 8: 8360
  • 67 Zhang S, Chen G, Zhu Z, Wang Y, Wang L, Meng S, Zheng X, Fu X, Zhang F, Huang W, Chen S. J. Catal. 2021; 402: 72
  • 68 Zhang F, Jin R, Chen J, Shao C, Gao W, Li L, Guan N. J. Catal. 2005; 232: 424
  • 69 Flores SO, Rios-Bernij O, Valenzuela MA, Córdova I, Gómez R, Gutiérrez R. Top. Catal. 2007; 44
  • 70 Kominami H, Iwasaki S, Maeda T, Imamura K, Hashimoto K, Kera Y, Ohtani B. Chem. Lett. 2009; 38: 410
  • 71 Wang H, Yan J, Chang W, Zhang Z. Catal. Commun. 2009; 10: 989
  • 72 Pan X, Yang MQ, Tang ZR, Xu YJ. J. Phys. Chem. C 2014; 118: 27325
  • 73 Piggott EK, Hope TO, Crabbe BW, Jalbert PM, Orlova G, Hallett-Tapley GL. Catal. Sci. Technol. 2017; 7: 5758
  • 74 Qian J, Yuan A, Yao C, Liu J, Li B, Xi F, Dong X. ChemCatChem 2018; 10: 4747
  • 75 Qiu L, Pang GA, Zheng G, Bauer D, Wieland K, Haisch C. ACS Appl. Mater. Interfaces 2020; 12: 21133
  • 76 Qu Z, Chen X, Zhong S, Deng GJ, Huang H. Org. Lett. 2021; 23: 5349
  • 77 Lu C, Yin Z, Sun C, Chen C, Wang F. Mol. Catal. 2021; 513: 111775
  • 78 Sarmah K, Mukhopadhyay S, Maji TK, Pratihar S. ACS Catal. 2019; 9: 732
  • 79 Shin D, Choi YS, Hong BH. ACS Omega 2018; 3: 11084
  • 80 Shiraishi Y, Togawa Y, Tsukamoto D, Tanaka S, Hirai T. ACS Catal. 2012; 2: 2475
  • 81 Cui Z, Zhang D, Hu J, Fang C. J. Alloys Compd. 2021; 885: 160961
  • 82 Tsutsumi K, Uchikawa F, Sakai K, Tabata K. ACS Catal. 2016; 6: 4394
  • 83 Weng B, Liu S, Zhang N, Tang ZR, Xu YJ. J. Catal. 2014; 309: 146
  • 84 Wu Y, Ye X, Zhang S, Meng S, Fu X, Wang X, Zhang X, Chen S. J. Catal. 2018; 359: 151
  • 85 Xu Q, Zeng J, Wang H, Li X, Xu J, Wu J, Xiao G, Xiao FX, Liu X. Nanoscale 2016; 8: 19161
  • 86 Xu Y, Chen Y, Fu WF. ACS Omega 2018; 3: 1904
  • 87 Xu S, Tang J, Zhou Q, Du J, Li H. ACS Sustainable Chem. Eng. 2019; 7: 16190
  • 88 Zhang S, Huang W, Fu X, Zheng X, Meng S, Ye X, Chen S. Appl. Catal. B 2018; 233: 1
  • 89 Zhang N, Xie S, Weng B, Xu YJ. J. Mater. Chem. A 2016; 4: 18804
  • 90 Yang J, Wang X, Zhao X, Dai J, Mo S. J. Phys. Chem. C 2015; 119: 3068
  • 91 Yang XJ, Chen B, Zheng LQ, Wu LZ, Tung CH. Green Chem. 2014; 16: 1082
  • 92 Yang MQ, Weng B, Xu YJ. Langmuir 2013; 29: 10549
  • 93 Kamegawa T, Seto H, Matsuura S, Yamashita H. ACS Appl. Mater. Interfaces 2012; 4: 6635
  • 94 Pahari SK, Pal P, Srivastava DN, Ghosh SC, Panda AB. Chem. Commun. 2015; 51: 10322
  • 95 Sorribes I, Wienhöfer Vicent C, Junge K, Llusar R, Beller M. Angew. Chem. Int. Ed. 2012; 51: 7794
  • 96 Ning X, Meng S, Fu X, Ye X, Chen S. Green Chem. 2016; 18: 3628
  • 97 Huang MH, Dai XC, Li T, Li YB, He Y, Xiao G, Xiao FX. J. Phys. Chem. C 2019; 123: 9721
  • 98 Imamura K, Iwasaki SI, Maeda T, Hashimoto K, Ohtani B, Kominami H. Phys. Chem. Chem. Phys. 2011; 13: 5114
  • 99 Imamura K, Nakanishi K, Hashimoto K, Kominami H. Tetrahedron 2014; 70: 6134
  • 100 Imamura K, Hashimoto K, Kominami H. Chem. Commun. 2012; 48: 4356
  • 101 Eskandari P, Kazemi F. J. Photochem. Photobiol., A 2018; 364: 233
  • 102 Kakroudi MA, Kazemi F, Kaboudin B. RSC Adv. 2014; 4: 52762
  • 103 Melinte V, Storea L, Buruiana T, Chibac AL. Eur. Polym. J. 2019; 121: 109289
  • 104 Moghanlou AO, Bezaatpour A, Sadr MH, Yosefi M, Salimi F. Mater. Sci. Semicond. Process. 2021; 130: 105838
  • 105 Molinari A, Mazzanti M, Fogagnolo M. Catal. Lett. 2020; 150: 1072
  • 106 Mahdavi F, Bruton TC, Li Y. J. Org. Chem. 1993; 58: 744
  • 107 Jiang KY, Dai XC, Yu Y, Mo QL, Xiao FX. J. Phys. Chem. C 2018; 122: 12291
  • 108 Yin H, Kuwahara Y, Mori K, Che M, Yamashita H. J. Mater. Chem. A 2019; 7: 3783
  • 109 Deenadayalan MS, Sharma N, Verma PK, Nagaraja CM. Inorg. Chem. 2016; 55: 5320
  • 110 Hunger K. Industrial Dyes. Chemistry, Properties, Applications. John Wiley & Sons; 2007
  • 111 Barbero M, Cadamuro S, Dughera S, Giaveno C. Eur. J. Org. Chem. 2006; 4884
  • 112 Benkhaya S, M’rabet S, Harifi AE. Heliyon 2020; 6: e03271
  • 113 Anderson RG, Nickless G. Analyst 1967; 92: 207
  • 114 Ma H, Li W, Wang J, Xiao G, Gong Y, Qi C, Feng Y, Li X, Bao Z, Cao W, Sun Q, Veaceslav C, Wang F, Lei Z. Tetrahedron 2012; 68: 8358
  • 115 Dabbagh HA, Teimouri A, Chermahini AN. Dyes Pigm. 2007; 73: 239
  • 116 Mondal B, Mukherjee PS. J. Am. Chem. Soc. 2018; 140: 12592
  • 117 Shuwanto H, Abdullah H, Kuo DH, Gultom NS. Appl. Surf. Sci. 2021; 552: 149508
  • 118 Wang H, Yang X, Xiong W, Zhang Z. Res. Chem. Intermed. 2015; 41: 3981
  • 119 Chaiseeda K, Nishimura S, Ebitani K. ACS Omega 2017; 2: 7066
  • 120 Xiao Q, Liu Z, Wang F, Sarina S, Zhu H. Appl. Catal., B 2017; 209: 69
  • 121 Pahalagedara MN, Pahalagedara LR, He J, Miao R, Gottlieb B, Rathnayake D, Suib SL. J. Catal. 2016; 336: 41
  • 122 Ke X, Zhang X, Zhao J, Sarina S, Barry J, Zhu H. Green Chem. 2013; 15: 236
  • 123 Jang S, Jung BJ, Kim MJ, Lee W, Kim DP. React. Chem. Eng. 2019; 4: 1752
  • 124 Kallitsakis MG, Ioannou DI, Terzidis MA, Kostakis GE, Lykakis IN. Org. Lett. 2020; 22: 4339
  • 125 Akhtar A, Akram K, Aslam Z, Ihsanullah I, Baig N, Bello MM. Environ. Prog. Sustainable Energy 2023; 42: e13984