Synlett 2011(7): 887-890  
DOI: 10.1055/s-0030-1259719
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

An Efficient Approach to Alkenyl Nitriles from Allyl Esters

Wang Zhoua,b, Jiaojiao Xub, Liangren Zhangb, Ning Jiao*b,c
a College of Chemical Engineering, Xiangtan University, Hunan 411105, P. R. of China
b State Key Laboratory of Natural and Biomimetic Drugs, Peking University, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing 100191, P. R. of China
Fax: +86(10)82805297; e-Mail: jiaoning@bjmu.edu.cn;
c State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. of China
Further Information

Publication History

Received 2 December 2010
Publication Date:
10 March 2011 (online)

Abstract

A novel and efficient approach to alkenyl nitriles from allyl esters has been developed. A tandem Pd-catalyzed substitution and the subsequent oxidative rearrangement are involved in this transformation. The method provides an important supplement for the synthesis of alkenyl nitriles from allyl esters.

    References and Notes

  • 1a Smith MB. March J. March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure   6th ed.:  Wiley; Hoboken: 2007. 
  • 1b Fleming FF. Wang Q. Chem. Rev.  2003,  103:  2035 
  • 1c Miller JS. Manson JL. Acc. Chem. Res.  2001,  34:  563 
  • 1d Magnus PD. Scott A. Fielding MR. Tetrahedron Lett.  2001,  42:  4127 
  • 1e Fatiadi AJ. In Preparation and Synthetic Applications of Cyano Compounds   Patai S. Rappaport Z. Wiley; New York: 1983. 
  • 2a Basavaiah D. Jaganmohan Rao A. Satyanarayana T. Chem. Rev.  2003,  103:  811 
  • 2b Antonioletti R. Bonadies F. Ciammaichella A. Viglianti A. Tetrahedron  2008,  64:  4644 
  • 2c Zhang TY. O’Toole JC. Dunigan JM. Tetrahedron Lett.  1998,  39:  1461 
  • 2d Kojima S. Kawaguchi K. Matsukawa S. Uchida K. Akiba K. Chem. Lett.  2002,  170 
  • 2e Kojima S. Fukuzaki T. Yamakawa A. Murai Y. Org. Lett.  2004,  6:  3917 
  • 2f Yamakado Y. Ishigoro M. Ikeda N. Yamamoto H.
    J. Am. Chem. Soc.  1981,  103:  5568 
  • 2g Crowe WE. Goldberg DR. J. Am. Chem. Soc.  1995,  117:  5162 
  • 2h Peppe C. de Azevedo Mello P. das Chagas RP.
    J. Organomet. Chem.  2006,  691:  2335 
  • 2i Tomioka T. Takahashi Y. Vaughan TG. Yanase T. Org. Lett.  2010,  12:  2171 
  • This carbon-carbon bond also can be constructed by the carbocyanation of alkynes, see:
  • 3a Nakao Y. Oda S. Hiyama T. J. Am. Chem. Soc.  2004,  126:  13904 
  • 3b Nakao Y. Yukawa T. Hirata Y. Oda S. Satoh J. Hiyama T. J. Am. Chem. Soc.  2006,  128:  7116 
  • 3c Nakao Y. Yada A. Ebata S. Hiyama T. J. Am. Chem. Soc.  2007,  129:  2428 
  • 4a Li L.-H. Pan Z.-L. Duan X.-H. Liang Y.-M. Synlett  2006,  2094 
  • 4b Alterman M. Hallberg A. J. Org. Chem.  2000,  65:  7984 
  • 4c Moreno-Mañas M. Pleixats R. Roglans A. Synlett  1997,  1157 
  • 4d Masllorens J. Moreno-Mañas M. Pla-Quintana A. Pleixats R. Roglans A. Synthesis  2002,  1903 
  • 5a Oishi T. Yamaguchi K. Mizuno N. Angew. Chem. Int. Ed.  2009,  48:  6286 
  • 5b Telvekar VN. Patel KN. Kundaikar HS. Chaudhari HK. Tetrahedron Lett.  2008,  49:  2213 
  • 5c Iida S. Togo H. Tetrahedron  2007,  63:  8274 
  • 5d Arote ND. Bhalerao DS. Akamanchi KG. Tetrahedron Lett.  2007,  48:  3651 
  • 6a Lohaus G. Org. Synth.  1970,  50:  18 
  • 6b Vorbrueggen H. Tetrahedron Lett.  1968,  9:  1631 
  • 7a Liguori A. Sindona G. Romeo G. Uccella N. Synthesis  1987,  168 
  • 7b Wood JL. Khatri NA. Weinreb SM. Tetrahedron Lett.  1979,  4907 
  • 8a Ishihara K. Furuya Y. Yamamoto H. Angew. Chem. Int. Ed.  2002,  41:  2983 
  • 8b Kuo C.-W. Zhu J.-L. Wu J.-D. Chu C.-M. Yao C.-F. Shia K.-S. Chem. Commun.  2007,  301 
  • 8c Zhou S. Addis D. Das S. Junge K. Beller M. Chem. Commun.  2009,  4883 
  • 9a Yamaguchi K. Fujiwara H. Ogasawara Y. Kotani M. Mizuno N. Angew. Chem. Int. Ed.  2007,  46:  3922 
  • 9b Yadav LDS. Srivastava VP. Patel R. Tetrahedron Lett.  2009,  50:  5532 
  • 9c Singh MK. Lakshman MK.
    J. Org. Chem.  2009,  74:  3079 
  • 9d Saha D. Saha A. Ranu BC. Tetrahedron Lett.  2009,  50:  6088 
  • 10a Rudler H. Denis B. Chem. Commun.  1998,  2145 
  • 10b Altamura A. Daccolti L. Detomaso A. Dinoi A. Fiorentino M. Fusco C. Curci R. Tetrahedron Lett.  1998,  39:  2009 
  • 10c Fernandez R. Gasch C. Lassaletta JM. Llera JM. Vazquez J. Tetrahedron Lett.  1993,  34:  141 
  • 11a Zhou W. Zhang L. Jiao N. Angew. Chem. Int. Ed.  2009,  48:  7094 
  • 11b Zhou W. Xu J. Zhang L. Jiao N. Org. Lett.  2010,  12:  2888 
  • 11c Qin C. Jiao N. J. Am. Chem. Soc.  2010,  132:  15893 
  • 12a Trost BM. Crawley ML. Chem. Rev.  2003,  103:  2921 
  • 12b Tsuji J. In Handbook of Organopalladium Chemistry for Organic Synthesis   Negishi E.-I. de Meijere A. John Wiley and Sons; New York: 2002.  p.1669 
  • 12c Trost BM. Fandrick DR. Aldrichimica Acta  2007,  40:  59 
  • 12d Trost BM. Machacek MR. Aponick A. Acc. Chem. Res.  2006,  39:  747 
  • 12e Trost BM. Van Vranken DL. Chem. Rev.  1996,  96:  395 
  • 12f Lamblin M. Nassar-Hardy L. Hierso J.-C. Fouquet E. Felpin F.-X. Adv. Synth. Catal.  2010,  352:  33 
  • 12g Murahashi S. Tanigawa Y. Imada Y. Taniguchi Y. Tetrahedron Lett.  1986,  27:  227 
  • For Pd-catalyzed allylic substitution reactions with TMSN3, see:
  • 13a Safi M. Fahrang R. Sinou D. Tetrahedron Lett.  1990,  31:  527 
  • 13b Murahashi S. Taniguchi Y. Imada Y. Tanigawa Y. J. Org. Chem.  1989,  54:  3292 
  • 13c Chang H.-M. Cheng C.-H. J. Chem. Soc., Perkin Trans. 1  2000,  22:  3799 
  • 13d Gyoung Y. Shim J.-G. Yamamoto Y. Tetrahedron Lett.  2000,  41:  4193 
  • 15a Li C.-J. Acc. Chem. Res.  2009,  42:  335 
  • 15b Buckle DR. Encyclopaedia of Reagent for Organic Synthesis   Vol. 3:  Paquette LA. John Wiley and Sons; Chichester: 1995.  p.1699 
  • 15c Walker D. Hiebert JD. Chem. Rev.  1967,  67:  153 
  • 15d Li Y.-Z. Li B.-J. Lu X.-Y. Lin S. Shi Z.-J. Angew. Chem. Int. Ed.  2009,  48:  3817 
  • 15e Zhang Y. Li C.-J. Angew. Chem. Int. Ed.  2006,  45:  1949 
  • 15f Zhang Y. Li C.-J. J. Am. Chem. Soc.  2006,  128:  4242 
  • 16a Lang S. Murphy JA. Chem. Soc. Rev.  2006,  35:  146 
  • 16b Sprecher M. Kost D. J. Am. Chem. Soc.  1994,  116:  1016 
  • 16c Katz CE. Aubé J. J. Am. Chem. Soc.  2003,  125:  13948 
  • 16d Gorin DJ. Davis NR. Toste FD. J. Am. Chem. Soc.  2005,  127:  11260 
  • 16e Yao L. Aubé J. J. Am. Chem. Soc.  2007,  129:  2766 
  • 16f Lamani M. Prabhu KR. Angew. Chem. Int. Ed.  2010,  49:  6622 
  • Other methods for the synthesis of nitriles from azide compunds:
  • 17a Hernández R. Leõn EI. Moreno P. Suárez E. J. Org. Chem.  1997,  62:  8974 
  • 17b Sasson R. Rozen S. Org. Lett.  2005,  7:  2177 
  • 17c Chiba S. Zhang L. Ang GY. Hui BW.-Q. Org. Lett.  2010,  12:  2052 
  • 18 Richard JP. Amyes TL. Lee YG. Jagannadham V. J. Am. Chem. Soc.  1994,  116:  10833 
14

Typical Experimental Procedure for the Synthesis of Alkenenitriles 2 from Allyl Esters
An oven-dried Schlenk tube was charge with allyl esters (0.5 mmol), TMSN3 (0.75 mmol), Pd(PPh3)4 (0.025 mmol), and DCE (2 mL) under N2. The tube was evacuated and refilled with N2 at -40 ˚C for three times. The mixture was stirred under reflux for 1 h. Then, sulfur (0.1 mmol) and DDQ (0.75 mmol) were added subsequently and carefully under N2 atmosphere (Caution! N2 emitted violently). The mixture was stirred under reflux for proper time monitored by TLC, followed by subsequent workup as above. The reaction was cooled down to r.t. After removal of the solvent, the residue was purified by flash chromatography on silica gel (EtOAc-PE, 1:20) to obtain the desired products 2.