Semin Reprod Med 2004; 22(2): 121-130
DOI: 10.1055/s-2004-828618
Copyright © 2004 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Potential Nonhormonal Therapeutics for Medical Treatment of Leiomyomas

Steven L. Young1 , Ayman Al-Hendy2 , John A. Copland3
  • 1Department of Obstetrics and Gynecology, University of NorthCarolina at Chapel Hill, Chapel Hill, North Carolina
  • 2Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas
  • 3Basic Cancer Research Program, Mayo Clinic College of Medicine, Jacksonville, Florida
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
26. Mai 2004 (online)

Uterine leiomyomas are a common disorder resulting in significant morbidity for women and substantial economic impact on the health care system. Current therapies include conservative surgery, hysterectomy, and hormonal therapy. Conservative surgical therapy often fails because of recurrence, and hysterectomy dramatically limits reproductive options. Radiologic therapies are associated with considerable risk of morbidity and mortality and are not likely to be compatible with reproduction. Hormonal therapies such as gonadotropin-releasing hormone (GnRH) analogues or progestins with or without estrogen are utilized by many patients, but long-term use of either is often responsible for unacceptable morbidity and hormonal therapies are not compatible with reproduction. Newer hormonal alternatives such as progesterone antagonists and selective agonists as well as “add-back” estrogen therapy in addition to GnRH analogues have been developed and show promise. However, no hormonal therapy that significantly alters estrogen and progesterone production or function is likely to be compatible with reproduction. Thus, it is important to develop novel nonhormonal therapies for medical treatment of leiomyomas. Other laboratories have evaluated pirfenidone, halofuginone, heparin, and interferon-α (IFN-α). Recent work in our laboratory suggests potential use of two additional classes of compounds, thiazolidinediones and tocopherol analogs. The rationale, evidence, and potential for the use of each of these compounds in the treatment of leiomyomas are discussed.

REFERENCES

  • 1 Buttram Jr V C, Reiter R C. Uterine leiomyomata: etiology, symptomatology, and management.  Fertil Steril. 1981;  36 433-445
  • 3 Candiani G B, Fedele L, Parazzini F, Villa L. Risk of recurrence after myomectomy.  Br J Obstet Gynaecol. 1991;  98 385-389
  • 4 Fedele L, Parazzini F, Luchini L, Mezzopane R, Tozzi L, Villa L. Recurrence of fibroids after myomectomy: a transvaginal ultrasonographic study.  Hum Reprod. 1995;  10 1795-1796
  • 2 Guarnaccia M M, Rein M S. Traditional surgical approaches to uterine fibroids: abdominal myomectomy and hysterectomy.  Clin Obstet Gynecol. 2001;  44 385-400
  • 5 Keshavarz H, Hillis S D, Kieke B A, Marchbanks P A. Hysterectomy surveillance-United States, 1994-1999. Surveillance Summaries, July 12, 2002.  MMWR Morb Mortal Wkly Rep. 2002;  51 1-8
  • 6 Spies J B, Spector A, Roth A R, Baker C M, Mauro L, Murphy-Skrynarz K. Complications after uterine artery embolization for leiomyomas.  Obstet Gynecol. 2002;  100 873-880
  • 7 Chrisman H B, Saker M B, Ryu R K et al.. The impact of uterine fibroid embolization on resumption of menses and ovarian function.  J Vasc Interv Radiol. 2000;  11 699-703
  • 8 Carr B R, Marshburn P B, Weatherall P T et al.. An evaluation of the effect of gonadotropin-releasing hormone analogs and medroxyprogesterone acetate on uterine leiomyomata volume by magnetic resonance imaging: a prospective, randomized, double blind, placebo-controlled, crossover trial.  J Clin Endocrinol Metab. 1993;  76 1217-1223
  • 9 Murphy A A, Morales A J, Kettel L M, Yen S S. Regression of uterine leiomyomata to the antiprogesterone RU486: dose-response effect.  Fertil Steril. 1995;  64 187-190
  • 10 Stewart E A. Treatment of uterine leiomyomas. In: Rose BD UpToDate Wellesley, MA; UpToDate 2003
  • 11 De Leo V, la Marca A, Morgante G. Short-term treatment of uterine fibromyomas with danazol.  Gynecol Obstet Invest. 1999;  47 258-262
  • 12 Ueki M, Okamoto Y, Tsurunaga T, Seiki Y, Ueda M, Sugimoto O. Endocrinological and histological changes after treatment of uterine leiomyomas with danazol or buserelin.  J Obstet Gynaecol. 1995;  21 1-7
  • 13 Nowak R A. Novel therapeutic strategies for leiomyomas: targeting growth factors and their receptors.  Environ Health Perspect. 2000;  108(suppl 5) 849-853
  • 14 Lee B S, Margolin S B, Nowak R A. Pirfenidone: a novel pharmacological agent that inhibits leiomyoma cell proliferation and collagen production.  J Clin Endocrinol Metab. 1998;  83 219-223
  • 15 Lee B S, Stewart E A, Sahakian M, Nowak R A. Interferon-alpha is a potent inhibitor of basic fibroblast growth factor-stimulated cell proliferation in human uterine cells.  Am J Reprod Immunol. 1998;  40 19-25
  • 16 Lee B S, Nowak R A. Human leiomyoma smooth muscle cells show increased expression of transforming growth factor-beta 3 (TGF beta 3) and altered responses to the antiproliferative effects of TGF beta.  J Clin Endocrinol Metab. 2001;  86 913-920
  • 17 Nowak R A. Identification of new therapies for leiomyomas: what in vitro studies can tell us.  Clin Obstet Gynecol. 2001;  44 327-334
  • 18 Gamage S D, Bischoff E D, Burroughs K D et al.. Efficacy of LGD1069 (Targretin), a retinoid X receptor-selective ligand, for treatment of uterine leiomyoma.  J Pharmacol Exp Ther. 2000;  295 677-681
  • 19 Shime H, Kariya M, Orii A et al.. Tranilast inhibits the proliferation of uterine leiomyoma cells in vitro through G1 arrest associated with the induction of p21(waf1) and p53.  J Clin Endocrinol Metab. 2002;  87 5610-5617
  • 20 Young S, Copland J. Vitamin E is a potent inhibitor of leiomyoma cell growth.  J Soc Gynecol Investig. 1999;  6(suppl) 230A
  • 21 Young S, Goluszko P, Taglialatela G, Copland J. A central role for protein kinase C in growth and death of leiomyoma cells: modulation by α-tocopherol succinate.  J Soc Gynecol Investig. 2000;  7(suppl) 132A
  • 22 Raghu G, Johnson W C, Lockhart D, Mageto Y. Treatment of idiopathic pulmonary fibrosis with a new antifibrotic agent, pirfenidone: results of a prospective, open-label phase II study.  Am J Respir Crit Care Med. 1999;  159 1061-1069
  • 23 Iyer S N, Gurujeyalakshmi G, Giri S N. Effects of pirfenidone on procollagen gene expression at the transcriptional level in bleomycin hamster model of lung fibrosis.  J Pharmacol Exp Ther. 1999;  289 211-218
  • 24 Iyer S N, Gurujeyalakshmi G, Giri S N. Effects of pirfenidone on transforming growth factor-beta gene expression at the transcriptional level in bleomycin hamster model of lung fibrosis.  J Pharmacol Exp Ther. 1999;  291 367-373
  • 25 Hewitson T D, Kelynack K J, Tait M G et al.. Pirfenidone reduces in vitro rat renal fibroblast activation and mitogenesis.  J Nephrol. 2001;  14 453-460
  • 26 Nagler A, Miao H Q, Aingorn H, Pines M, Genina O, Vlodavsky I. Inhibition of collagen synthesis, smooth muscle cell proliferation, and injury-induced intimal hyperplasia by halofuginone.  Arterioscler Thromb Vasc Biol. 1997;  17 194-202
  • 27 Elkin M, Ariel I, Miao H Q et al.. Inhibition of bladder carcinoma angiogenesis, stromal support, and tumor growth by halofuginone.  Cancer Res. 1999;  59 4111-4118
  • 28 Kliewer S A, Umesono K, Mangelsdorf D J, Evans R M. Retinoid X receptor interacts with nuclear receptors in retinoic acid, thyroid hormone and vitamin D3 signalling.  Nature. 1992;  355 446-449
  • 29 Kliewer S A, Umesono K, Noonan D J, Heyman R A, Evans R M. Convergence of 9-cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors.  Nature. 1992;  358 771-774
  • 30 Bischoff E D, Gottardis M M, Moon T E, Heyman R A, Lamph W W. Beyond tamoxifen: the retinoid X receptor-selective ligand LGD1069 (TARGRETIN) causes complete regression of mammary carcinoma.  Cancer Res. 1998;  58 479-484
  • 31 Everitt J I, Wolf D C, Howe S R, Goldsworthy T L, Walker C. Rodent model of reproductive tract leiomyomata. Clinical and pathological features.  Am J Pathol. 1995;  146 1556-1567
  • 32 Howe S R, Everitt J L, Gottardis M M, Walker C. Rodent model of reproductive tract leiomyomata: characterization and use in preclinical therapeutic studies.  Prog Clin Biol Res. 1997;  396 205-215
  • 33 Miyazawa K, Kikuchi S, Fukuyama J, Hamano S, Ujiie A. Inhibition of PDGF- and TGF-beta 1-induced collagen synthesis, migration and proliferation by tranilast in vascular smooth muscle cells from spontaneously hypertensive rats.  Atherosclerosis. 1995;  118 213-221
  • 34 Fukuyama J, Miyazawa K, Hamano S, Ujiie A. Inhibitory effects of tranilast on proliferation, migration, and collagen synthesis of human vascular smooth muscle cells.  Can J Physiol Pharmacol. 1996;  74 80-84
  • 35 Yamada H, Tajima S, Nishikawa T. Tranilast inhibits collagen synthesis in normal, scleroderma and keloid fibroblasts at a late passage culture but not at an early passage culture.  J Dermatol Sci. 1995;  9 45-47
  • 36 Horiuchi A, Nikaido T, Ya-Li Z, Ito K, Orii A, Fujii S. Heparin inhibits proliferation of myometrial and leiomyomal smooth muscle cells through the induction of alpha-smooth muscle actin, calponin h1 and p27.  Mol Hum Reprod. 1999;  5 139-145
  • 37 Tamai H, Katoh K, Yamaguchi T et al.. The impact of tranilast on restenosis after coronary angioplasty: the Second Tranilast Restenosis Following Angioplasty Trial (TREAT-2).  Am Heart J. 2002;  143 506-513
  • 38 Bono F, Rigon P, Lamarche I, Savi P, Salel V, Herbert J M. Heparin inhibits the binding of basic fibroblast growth factor to cultured human aortic smooth-muscle cells.  Biochem J. 1997;  326 661-668
  • 39 Reilly C F, Fritze L M, Rosenberg R D. Heparin-like molecules regulate the number of epidermal growth factor receptors on vascular smooth muscle cells.  J Cell Physiol. 1988;  136 23-32
  • 40 Lapierre F, Holme K, Lam L et al.. Chemical modifications of heparin that diminish its anticoagulant but preserve its heparanase-inhibitory, angiostatic, anti-tumor and anti-metastatic properties.  Glycobiology. 1996;  6 355-366
  • 41 Mason H R, Nowak R A, Morton C C, Castellot Jr J J. Heparin inhibits the motility and proliferation of human myometrial and leiomyoma smooth muscle cells.  Am J Pathol. 2003;  162 1895-1904
  • 42 Benezra M, Ben-Sasson S A, Regan J, Chang M, Bar-Shavit R, Vlodavsky I. Antiproliferative activity to vascular smooth muscle cells and receptor binding of heparin-mimicking polyaromatic anionic compounds.  Arterioscler Thromb. 1994;  14 1992-1999
  • 43 Tredget E E, Wang R, Shen Q, Scott P G, Ghahary A. Transforming growth factor-beta mRNA and protein in hypertrophic scar tissues and fibroblasts: antagonism by IFN-alpha and IFN-gamma in vitro and in vivo.  J Interferon Cytokine Res. 2000;  20 143-151
  • 44 Ghahary A, Shen Q, Rogers J A et al.. Liposome-associated interferon-alpha-2b functions as an anti-fibrogenic factor for human dermal fibroblasts.  J Invest Dermatol. 1997;  109 55-60
  • 45 Minakuchi K, Kawamura N, Tsujimura A, Ogita S. Remarkable and persistent shrinkage of uterine leiomyoma associated with interferon alfa treatment for hepatitis.  Lancet. 1999;  353 2127-2128
  • 46 Dusheiko G. Side effects of alpha interferon in chronic hepatitis C.  Hepatology. 1997;  26 112S-121S
  • 47 Tsibris J C, Porter K B, Jazayeri A et al.. Human uterine leiomyomata express higher levels of peroxisome proliferator-activated receptor gamma, retinoid X receptor alpha, and all-trans retinoic acid than myometrium.  Cancer Res. 1999;  59 5737-5744
  • 48 Houston K D, Copland J A, Broaddus R R, Gottardis M M, Fischer S M, Walker C L. Inhibition of proliferation and estrogen receptor signaling by peroxisome proliferator-activated receptor gamma ligands in uterine leiomyoma.  Cancer Res. 2003;  63 1221-1227
  • 49 Porter K B, Tsibris J C, Porter G W et al.. Effects of raloxifene in a guinea pig model for leiomyomas.  Am J Obstet Gynecol. 1998;  179 1283-1287
  • 50 Fayed Y M, Tsibris J C, Langenberg P W, Robertson Jr A L. Human uterine leiomyoma cells: binding and growth responses to epidermal growth factor, platelet-derived growth factor, and insulin.  Lab Invest. 1989;  60 30-37
  • 51 Fujiwara T, Horikoshi H. Troglitazone and related compounds: therapeutic potential beyond diabetes.  Life Sci. 2000;  67 2405-2416
  • 52 Bunyan J, Green J, Diplock A T, Robinson D. Lysosomal enzymes and vitamin E deficiency. II. Gestation-resorption in the rat.  Br J Nutr. 1967;  21 137-145
  • 53 Csallany A S, Ayaz K L, Su L C. Effect of dietary vitamin E and aging on tissue lipofuscin pigment concentration in mice.  J Nutr. 1977;  107 1792-1799
  • 54 Csallany A S, Ayaz K L, Menken B Z. Effect of dietary vitamin E upon fluorescent compounds of the rat uterus.  Lipids. 1984;  19 911-915
  • 55 Desai I D, Fletcher B L, Tappel A L. Fluorescent pigments from uterus of vitamin E-deficient rats.  Lipids. 1975;  10 307-309
  • 56 Evans D J, Berney D M, Pollock D J. Symptomatic vitamin E deficiency diagnosed after histological recognition of myometrial lipofuscinosis.  Lancet. 1995;  346 545-546
  • 57 Tasinato A, Boscoboinik D, Bartoli G M, Maroni P, Azzi A. d-alpha-Tocopherol inhibition of vascular smooth muscle cell proliferation occurs at physiological concentrations, correlates with protein kinase C inhibition, and is independent of its antioxidant properties.  Proc Natl Acad Sci U S A. 1995;  92 12190-12194
  • 58 Card J W, Leeder R G, Racz W J, Brien J F, Bray T M, Massey T E. Effects of dietary vitamin E supplementation on pulmonary morphology and collagen deposition in amiodarone- and vehicle-treated hamsters.  Toxicology. 1999;  133 75-84
  • 59 Delanian S, Porcher R, Balla-Mekias S, Lefaix J L. Randomized, placebo-controlled trial of combined pentoxifylline and tocopherol for regression of superficial radiation-induced fibrosis.  J Clin Oncol. 2003;  21 2545-2550
  • 60 Kilinc C, Ozcan O, Karaoz E, Sunguroglu K, Kutluay T, Karaca L. Vitamin E reduces bleomycin-induced lung fibrosis in mice: biochemical and morphological studies.  J Basic Clin Physiol Pharmacol. 1993;  4 249-269
  • 61 Denis M. Antioxidant therapy partially blocks immune-induced lung fibrosis.  Inflammation. 1995;  19 207-219
  • 62 Card J W, Racz W J, Brien J F, Massey T E. Attenuation of amiodarone-induced pulmonary fibrosis by vitamin E is associated with suppression of transforming growth factor-beta1 gene expression but not prevention of mitochondrial dysfunction.  J Pharmacol Exp Ther. 2003;  304 277-283
  • 63 Malafa M P, Fokum F D, Mowlavi A, Abusief M, King M. Vitamin E inhibits melanoma growth in mice.  Surgery. 2002;  131 85-91
  • 64 Fariss M W, Fortuna M B, Everett C K, Smith J D, Trent D F, Djuric Z. The selective antiproliferative effects of alpha-tocopheryl hemisuccinate and cholesteryl hemisuccinate on murine leukemia cells result from the action of the intact compounds.  Cancer Res. 1994;  54 3346-3351
  • 65 Israel K, Sanders B G, Kline K. RRR-alpha-tocopheryl succinate inhibits the proliferation of human prostatic tumor cells with defective cell cycle/differentiation pathways.  Nutr Cancer. 1995;  24 161-169
  • 66 Israel K, Yu W, Sanders B G, Kline K. Vitamin E succinate induces apoptosis in human prostate cancer cells: role for Fas in vitamin E succinate-triggered apoptosis.  Nutr Cancer. 2000;  36 90-100
  • 67 Neuzil J, Weber T, Terman A, Weber C, Brunk U T. Vitamin E analogues as inducers of apoptosis: implications for their potential antineoplastic role.  Redox Rep. 2001;  6 143-151
  • 68 Neuzil J, Weber T, Schroder A et al.. Induction of cancer cell apoptosis by alpha-tocopheryl succinate: molecular pathways and structural requirements.  FASEB J. 2001;  15 403-415
  • 69 Neuzil J. Alpha-tocopheryl succinate epitomizes a compound with a shift in biological activity due to pro-vitamin-to-vitamin conversion.  Biochem Biophys Res Commun. 2002;  293 1309-1313
  • 70 Neuzil J, Kagedal K, Andera L, Weber C, Brunk U T. Vitamin E analogs: a new class of multiple action agents with anti-neoplastic and anti-atherogenic activity.  Apoptosis. 2002;  7 179-187
  • 71 Rose A T, McFadden D W. Alpha-tocopherol succinate inhibits growth of gastric cancer cells in vitro.  J Surg Res. 2001;  95 19-22
  • 72 Turley J M, Fu T, Ruscetti F W, Mikovits J A, Bertolette III D C, Birchenall-Roberts M C. Vitamin E succinate induces Fas-mediated apoptosis in estrogen receptor-negative human breast cancer cells.  Cancer Res. 1997;  57 881-890
  • 73 You H, Yu W, Sanders B G, Kline K. RRR-alpha-tocopheryl succinate induces MDA-MB-435 and MCF-7 human breast cancer cells to undergo differentiation.  Cell Growth Differ. 2001;  12 471-480
  • 74 Yu W, Sanders B G, Kline K. RRR-alpha-tocopheryl succinate inhibits EL4 thymic lymphoma cell growth by inducing apoptosis and DNA synthesis arrest.  Nutr Cancer. 1997;  27 92-101
  • 75 Turley J M, Ruscetti F W, Kim S J, Fu T, Gou F V, Birchenall-Roberts M C. Vitamin E succinate inhibits proliferation of BT-20 human breast cancer cells: increased binding of cyclin A negatively regulates E2F transactivation activity.  Cancer Res. 1997;  57 2668-2675
  • 76 Neuzil J, Weber T, Gellert N, Weber C. Selective cancer cell killing by alpha-tocopheryl succinate.  Br J Cancer. 2001;  84 87-89
  • 77 Zhang Y, Ni J, Messing E M, Chang E, Yang C R, Yeh S. Vitamin E succinate inhibits the function of androgen receptor and the expression of prostate-specific antigen in prostate cancer cells.  Proc Natl Acad Sci U S A. 2002;  99 7408-7413
  • 78 Kitagawa M, Mino M. Effects of elevated d-alpha(RRR)-tocopherol dosage in man.  J Nutr Sci Vitaminol (Tokyo). 1989;  35 133-142
  • 79 Morinobu T, Ban R, Yoshikawa S, Murata T, Tamai H. The safety of high-dose vitamin E supplementation in healthy Japanese male adults.  J Nutr Sci Vitaminol (Tokyo). 2002;  48 6-9
  • 80 Meydani S N, Meydani M, Blumberg J B et al.. Assessment of the safety of supplementation with different amounts of vitamin E in healthy older adults.  Am J Clin Nutr. 1998;  68 311-318
  • 81 Farrell P M, Bieri J G. Megavitamin E supplementation in man.  Am J Clin Nutr. 1975;  28 1381-1386
  • 82 Cheeseman K H, Holley A E, Kelly F J, Wasil M, Hughes L, Burton G. Biokinetics in humans of RRR-alpha-tocopherol: the free phenol, acetate ester, and succinate ester forms of vitamin E.  Free Radic Biol Med. 1995;  19 591-598

Steven L YoungM.D. Ph.D. 

Associate Professor, Department of Obstetrics and Gynecology (CB# 7570), University of North Carolina at Chapel Hill

Chapel Hill, NC 27599

    >