Semin Reprod Med 2005; 23(4): 301-308
DOI: 10.1055/s-2005-923387
Copyright © 2005 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

New Approaches to Assisted Reproductive Technologies

David L. Keefe1 , John P. Parry2
  • 1Director, Division of Reproductive Medicine and Infertility, Women and Infants Hospital, Providence, Rhode Island; Medical Director, Division of Reproductive Endocrinology, Tufts-New England Medical Center, Boston, Massachusetts
  • 2Department of Obstetrics and Gynecology, Tufts-New England Medical Center, 750 Washington Street, Boston, Massachusetts
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
29. November 2005 (online)

ABSTRACT

Egg infertility remains the greatest challenge in the treatment of the infertile couple. As women increasingly delay attempts at childbearing, egg infertility has become more prevalent. Attempts to overcome egg infertility by superovulation and in vitro fertilization have produced an epidemic of multiple gestations, itself a major public health concern. The pathophysiology of egg infertility arises from chromosomal nondisjunction. Cytogenetic analyses of polar bodies and/or blastomeres currently provide the most powerful predictors of egg infertility. Approaches that label all chromosomes (spectral karyotyping and comparative genomic hybridization), or identify predisposition to aneuploidy (spindle imaging, telomere length measurement) are on the horizon. For the foreseeable future, the treatment of egg infertility will be limited to egg donation for severe cases and transfer of the most viable embryos for milder cases. Oocyte reconstitution not only lacks evidence of clinical efficacy, but also biological credibility, given that growing evidence supports the primacy of chromosomes themselves in meiotic nondisjunction.

REFERENCES

  • 1 Ezra Y, Laufer S A. Defective oocytes in a new subgroup of unexplained infertility.  Fertil Steril. 1992;  58 24-27
  • 2 Lutjen P J, Leeton J F, Findlay J K. Oocyte and embryo donation in IVF programmes.  Clin Obstet Gynaecol. 1985;  12(4) 799-813
  • 3 Navot D, Bergh P A, Williams M A et al.. Poor oocyte quality rather than implantation failure as a cause of age-related decline in female fertility.  Lancet. 1991;  33(8754) 1375-1377
  • 4 Sauer M V, Paulson R J. Oocyte and embryo donation.  Curr Opin Obstet Gynecol. 1995;  7(3) 193-198
  • 5 Callahan T L, Hall J E, Ettner S L et al.. The economic impact of multiple-gestation pregnancies and the contribution of assisted-reproduction techniques to their incidence.  N Engl J Med. 1994;  331 244-249
  • 6 Abdalla H I, Burton G, Kirkland A et al.. Age, pregnancy and miscarriage: uterine versus ovarian factors.  Hum Reprod. 1993;  8(9) 1512-1517
  • 7 Toner J P, Philput C B, Jones G S, Muasher S J. Basal follicle-stimulating hormone level is a better predictor of in vitro fertilization performance than age.  Fertil Steril. 1991;  55(4) 784-791
  • 8 Corson S L, Gutmann J, Batzer F R et al.. Inhibin-B as a test of ovarian reserve for infertile women.  Hum Reprod. 1999;  14 2818-2821
  • 9 Gulekli B, Bulbul Y, Onvural A et al.. Accuracy of ovarian reserve tests.  Hum Reprod. 1999;  14(11) 2822-2826
  • 10 Hall J E, Welt C K, Cramer D W. Inhibin A and inhibin B reflect ovarian function in assisted reproduction but are less useful at predicting outcome.  Hum Reprod. 1999;  14(2) 409-415
  • 11 Sharara F I, Scott Jr R T, Seifer D B. The detection of diminished ovarian reserve in infertile women.  Am J Obstet Gynecol. 1998;  179 804-812
  • 12 Keefe D L. Reproductive aging is an evolutionarily programmed strategy that no longer provides adaptive value.  Fertil Steril. 1998;  70(2) 204-206
  • 13 Baker T G. A quantitative and cytological study of germ cells in humn ovaries.  Proc R Soc Lond B Biol Sci. 1963;  158 417-433
  • 14 Baker T G, Sum W. Development of the ovary and oogenesis.  Clin Obstet Gynecol. 1976;  3 3-26
  • 15 Hassold T, Chiu D. Maternal age-specific rates of numerical chromosome abnormalities with special reference to trisomy.  Hum Genet. 1985;  70(1) 11-17
  • 16 Verlinsky Y, Cieslak J, Freidine M et al.. Polar body diagnosis of common aneuploidies by FISH.  J Assist Reprod Genet. 1996;  13(2) 157-162
  • 17 Verlinsky Y, Cieslak J, Ivakhnenko V et al.. Prepregnancy genetic testing for age-related aneuploidies by polar body analysis.  Genet Test. 1997;  1(4) 231-235
  • 18 Verlinsky Y, Cieslak J, Ivakhnenko V et al.. Preimplantation diagnosis of common aneuploidies by the first- and second-polar body FISH analysis.  J Assist Reprod Genet. 1998;  15(5) 285-289
  • 19 Verlinsky Y, Cieslak J, Ivakhnenko V et al.. Prevention of age-related aneuploidies by polar body testing of oocytes.  J Assist Reprod Genet. 1999;  16(4) 165-169
  • 20 Verlinsky Y, Evsikov S. Karyotyping of human oocytes by chromosomal analysis of the second polar bodies.  Mol Hum Reprod. 1999;  5(2) 89-95
  • 21 Marquez C, Sandalinas M, Bahce M, Alikani M, Munne S. Chromosome abnormalities in 1255 cleavage-stage human embryos.  Reprod Biomed Online. 2000;  1(1) 17-26
  • 22 Munne S, Sandalinas M, Escudero T, Marquez C, Cohen J. Chromosome mosaicism in cleavage-stage human embryos: evidence of a maternal age effect.  Reprod Biomed Online. 2002;  4(3) 223-232
  • 23 Obasaju M, Kadam A, Biancardi T et al.. Pregnancies from single normal embryo transfer in women older than 40 years.  Reprod Biomed Online. 2001;  2(2) 98-101
  • 24 Bahce M, Cohen J, Munne S. Preimplantation genetic diagnosis of aneuploidy: were we looking at the wrong chromosomes?.  J Assist Reprod Genet. 1999;  16(4) 176-181
  • 25 Abdelhadi I, Colls P, Sandalinas M, Escudero T, Munne S. Preimplantation genetic diagnosis of numerical abnormalities for 13 chromosomes.  Reprod Biomed Online. 2003;  6(2) 226-231
  • 26 Sandalinas M, Marquez C, Munne S. Spectral karyotyping of fresh, non-inseminated oocytes.  Mol Hum Reprod. 2002;  8(6) 580-585
  • 27 Wells D, Escudero T, Levy B et al.. First clinical application of comparative genomic hybridization and polar body testing for preimplantation genetic diagnosis of aneuploidy.  Fertil Steril. 2002;  78(3) 543-549
  • 28 Bolton V N, Hawes S M, Taylor C I, Parsons J H. Development of spare human preimplantation embryos in vitro: an analysis of the correlations among gross morphology, cleavage rates, and development to the blastocyst.  J In Vitro Fert Embryo Transfer. 1989;  6 30-35
  • 29 Battaglia D E, Goodwin P, Klein N A, Soules M R. Influence of maternal age on meiotic spindle assembly in oocytes from naturally cycling women.  Hum Reprod. 1996;  11(10) 2217-2222
  • 30 Oldenbourg R. Polarized light microscopy of spindles.  Methods Cell Biol. 1999;  61 175-208
  • 31 Sato H, Ellis G W, Inoue S. Microtubular origin of mitotic spindle for birefringence.  J Cell Biol. 1975;  67 501-517
  • 32 Wang W H, Meng L, Hackett R J, Odenbourg R, Keefe D L. The spindle observation and its relationship with fertilization after intracytoplasmic sperm injection in living human oocytes.  Fertil Steril. 2001;  75(2) 348-353
  • 33 Liu L, Oldenbourg R, Trimarchi J R, Keefe D L. A reliable, noninvasive technique for spindle imaging and enucleation of mammalian oocytes.  Nat Biotechnol. 2000;  18(2) 223-225
  • 34 Keefe D, Tran P, Pellegrini C, Oldenbourg R. Polarized light microscopy and digital image processing identify a multilaminar structure of the hamster zona pellucida.  Hum Reprod. 1997;  12 1250-1252
  • 35 Silva C P, Silva V, Kommineni K, Keefe D. Effect of in vitro culture of mammalian embryos on the architecture of the zona pellucida.  Biol Bull. 1997;  193(2) 235-236
  • 36 Silva C P, Kommineni K, Oldenbourg R, Keefe D L. The first polar body does not predict accurately the location of the metaphase II meiotic spindle in mammalian oocytes.  Fertil Steril. 1999;  71 719-721
  • 37 Wang W H, Meng L, Hackett R J, Keefe D L. Developmental ability of human oocytes with or without birefringent spindles imaged by Polscope before insemination.  Hum Reprod. 2001;  16(7) 1464-1468
  • 38 Liu L, Keefe D L. Aging-associated aberration in meiosis of oocytes from senescence-accelerated mouse (SAM).  Hum Reprod. 2002;  17 2678-2685
  • 39 Wang W H, Meng L, Hackett R J, Oldenbourg R, Keefe D L. Rigorous thermal control during intracytoplasmic sperm injection stabilizes the meiotic spindle and improves fertilization and pregnancy rates.  Fertil Steril. 2002;  77 1274-1277
  • 40 Wright D L, Jones E L, Mayer J F et al.. Characterization of telomerase activity in the human oocyte and preimplantation embryo.  Mol Hum Reprod. 2001;  7(10) 947-955
  • 41 Henderson S A, Edwards R G. Chiasma frequency and maternal age in mammals.  Nature. 1968;  218(136) 22-28
  • 42 Polani P E, Crolla J A. A test of the production line hypothesis of mammalian oogenesis.  Hum Genet. 1991;  88(1) 64-70
  • 43 Bass H W, Marshall W F, Sedat J W, Agard D A, Cande W Z. Telomeres cluster de novo before the initiation of synapsis: a three-dimensional spatial analysis of telomere positions before and during meiotic prophase.  J Cell Biol. 1997;  137(1) 5-18
  • 44 Bass H W, Riera-Lizarazu O, Ananiev E V et al.. Evidence for the coincident initiation of homolog pairing and synapsis during the telomere-clustering (bouquet) stage of meiotic prophase.  J Cell Sci. 2000;  113 1033-1042
  • 45 de Lange T. Ending up with the right partner.  Nature. 1998;  392(6678) 753-754
  • 46 Scherthan H, Jerratsch M, Li B et al.. Mammalian meiotic telomeres: protein composition and redistribution in relation to nuclear pores.  Mol Biol Cell. 2000;  11(12) 4189-4203
  • 47 Scherthan H, Weich S, Schwegler H et al.. Centromere and telomere movements during early meiotic prophase of mouse and man are associated with the onset of chromosome pairing.  J Cell Biol. 1996;  134(5) 1109-1125
  • 48 Liu L, Blasco M A, Keefe D L. Requirement of functional telomeres for metaphase chromosome alignments and integrity of meiotic spindles.  EMBO Rep. 2002;  3 230-234
  • 49 Poon S S, Martens U M, Ward R K, Lansdorp P M. Telomere length measurements using digital fluorescence microscopy.  Cytometry. 1999;  36 267-278
  • 50 Liu L, Trimarchi J R, Smith P J, Keefe D L. Mitochondrial dysfunction leads to telomere attrition and genomic instability.  Aging Cell. 2002;  1 40-46
  • 51 Liu L, Blasco M, Trimarchi J, Keefe D. An essential role for functional telomeres in mouse germ cells during fertilization and early development.  Dev Biol. 2002;  249 74-84
  • 52 Zhang J, Wang C W, Krey L et al.. In vitro maturation of human preovulatory oocytes reconstructed by germinal vesicle transfer.  Fertil Steril. 1999;  71(4) 726-731
  • 53 Cohen J, Scott R, Schimmel T, Levron J, Willadsen S. Birth of infant after transfer of anucleate donor oocyte cytoplasm into recipient eggs.  Lancet. 1997;  350 186-187
  • 54 Foote R H. Contemporary endocrinology: assisted fertilization and nuclear transfer in mammals. In: Wolf DP, Zelinski-Wooten M Contempory Endocrinology. Totowa, NJ; Humana Press 2001: 3-20
  • 55 Rinaudo P, Niven-Fairchild T, Buradagunta S et al.. Microinjection of mitochondria into zygotes creates a model for studying the inheritance of mitochondrial DNA during preimplantation development.  Fertil Steril. 1999;  71 912-918
  • 56 Gartner K, Bodioli, Hill, Rapp. High variability of body sizes within nucleus-transfer-clones of calves: artifacts or a biological feature?.  Reprod Com Anim. 1998;  33 67-75
  • 57 Takeda K, Takahashi S, Onishi A, Goto Y, Miyazawa A, Imai H. Dominant distribution of mitochondrial DNA from recipient oocytes in bovine embryos and offspring after nuclear transfer.  J Reprod Fertil. 1999;  116 253-259
  • 58 Liu L, Keefe D L. Cytoplasm mediates both development and oxidation-induced apoptotic cell death in mouse zygotes.  Biol Reprod. 2000;  62(6) 1828-1834

David L KeefeM.D. 

Director, Division of Reproductive Medicine and Infertility

Women and Infants Hospital, 101 Dudley Street, Providence, RI 02905

eMail: Dkeefe@wihri.org

    >