Synthesis 2023; 55(02): 297-306
DOI: 10.1055/a-1921-8664
paper
Special Issue dedicated to Prof. Alain Krief

Crystal Structures of Organoselenium Compounds: Structural Descriptors for Chalcogen Bonds

Laurie Bodart
,
Johan Wouters
Authors thank the Fonds National de la Recherche Scientifique (FNRS), Belgium, for financial support.


Abstract

Less conventional non-covalent interactions such as chalcogen bonds attract the attention of researchers in various fields (organocatalysis, material sciences, biological chemistry, …). We present here useful descriptors to easily discriminate the structures in which chalcogen bonds involving selenium are observed. Our study focused on organoselenium compounds as chalcogen bond donors and on molecular entities, as chalcogen bond acceptors, containing N, O, S, Se, and Te atoms or aromatic rings. For conventional chalcogen bonds (C–Se⋯X, with X = N, O, S, Se, or Te), the combination of the C–Se⋯X angle and the distance between X and the C–Se-C plane proved to be most relevant for identification of chalcogen bonds. For chalcogen⋯π bonds, the most relevant parameters are a combination of the C–Se⋯X angle and the angle between the C–Se bond and the normal to the aromatic ring plane.

Supporting Information



Publication History

Received: 05 July 2022

Accepted: 09 August 2022

Accepted Manuscript online:
09 August 2022

Article published online:
13 September 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Desiraju GR, Steiner T. The Weak Hydrogen Bond: In Structural Chemistry and Biology (International Union of Crystallography Monographs on Crystallography), Vol. 9. Oxford University Press; Oxford: 2001
  • 2 Scheiner S. Phys. Chem. Chem. Phys. 2021; 23: 5702
  • 3 Brammer L. Faraday Discuss. 2017; 203: 485
  • 4 Cavallo G, Metrangolo P, Milani R, Pilati T, Priimagi A, Resnati G, Terraneo G. Chem. Rev. 2016; 116: 2478
  • 5 Wang W, Ji B, Zhang Y. J. Phys. Chem. A 2009; 113: 8132
  • 6 Politzer P, Murray JS. Crystals 2019; 9: 165
  • 7 Murray JS, Lane P, Clark T, Politzer P. J. Mol. Model. 2007; 13: 1033
  • 8 Aakeroy CB, Bryce DL, Desiraju GR, Frontera A, Legon AC, Nicotra F, Rissanen K, Scheiner S, Terraneo G, Metrangolo P. Pure Appl. Chem. 2019; 91: 1889
  • 9 Biot N, Bonifazi D. Coord. Chem. Rev. 2020; 413: 213243
  • 10 Chivers T, Laitinen RS. Chalcogen-Nitrogen Chemistry: From Fundamentals To Applications In Biological, Physical And Materials Sciences (Updated Edition). World Scientific; Singapore: 2021
  • 11 Iwaoka M, Takemoto S, Tomoda S. J. Am. Chem. Soc. 2002; 124: 10613
  • 12 Politzer P, Murray JS, Clark T. Phys. Chem. Chem. Phys. 2013; 15: 11178
  • 13 Politzer P, Murray JS. In Practical Aspects of Computational Chemistry. Leszczynski J, Shukla M. Springer; Berlin: 2009: 149-163
  • 14 Mahmudov KT, Kopylovich MN, da Silva MF. C. G, Pombeiro AJ. Dalton Transact. 2017; 46: 10121
  • 15 Murray JS, Lane P, Politzer P. J. Mol. Model. 2009; 15: 723
  • 16 Haberhauer G, Gleiter R. Angew. Chem. Int. Ed. 2020; 59: 21236
  • 17 Pascoe DJ, Ling KB, Cockroft SL. J. Am. Chem. Soc. 2017; 139: 15160
  • 18 de Azevedo Santos L, van Der Lubbe SC, Hamlin TA, Ramalho TC, Bickelhaupt MF. ChemistryOpen 2021; 10: 391
  • 19 Scilabra P, Terraneo G, Resnati G. Acc. Chem. Res. 2019; 52: 1313
  • 20 Varadwaj PR. Molecules 2019; 24: 3166
  • 21 Varadwaj PR, Varadwaj A, Marques HM, MacDougall PJ. Phys. Chem. Chem. Phys. 2019; 21: 19969
  • 22 Lundemba AS, Bibelayi DD, Tsalu PV, Wood PA, Cole J, Kayembe JS, Yav ZG. Cryst. Struct. Theory Appl. 2021; 10: 57
  • 23 Daolio A, Scilabra P, Di Pietro ME, Resnati C, Rissanen K, Resnati G. New J. Chem. 2020; 44: 20697
  • 24 Kříž K, Fanfrlík J, Lepšík M. ChemPhysChem 2018; 19: 2540
  • 25 Kozlova A, Thabault L, Dauguet N, Deskeuvre M, Stroobant V, Pilotte L, Liberelle M, Van den Eynde B, Frédérick R. Eur. J. Med. Chem. 2022; 227: 113892
  • 26 Bamberger J, Ostler F, Mancheño OG. ChemCatChem 2019; 11: 5198
  • 27 Benz S, López-Andarias J, Mareda J, Sakai N, Matile S. Angew. Chem. Int. Ed. 2017; 56: 812
  • 28 Wonner P, Dreger A, Vogel L, Engelage E, Huber SM. Angew. Chem. Int. Ed. 2019; 58: 16923
  • 29 Wang W, Zhu H, Feng L, Yu Q, Hao J, Zhu R, Wang Y. J. Am. Chem. Soc. 2020; 142: 3117
  • 30 Oyama T, Yang YS, Matsuo K, Yasuda T. Chem. Commun. 2017; 53: 3814
  • 31 Shi S, Tang L, Guo H, Uddin MA, Wang H, Yang K, Liu B, Wang Y, Sun H, Woo HY. Macromolecules 2019; 52: 7301
  • 32 Pati PB, Zade SS. Cryst. Growth Des. 2014; 14: 1695
  • 33 Chen L, Xiang J, Zhao Y, Yan Q. J. Am. Chem. Soc. 2018; 140: 7079
  • 34 Riwar LJ, Trapp N, Root K, Zenobi R, Diederich F. Angew. Chem. Int. Ed. 2018; 57: 17259
  • 35 Ho PC, Tomassetti V, Britten JF, Vargas-Baca I. Inorg. Chem. 2021; 60: 16726
  • 36 Zhu Y.-J, Gao Y, Tang M.-M, Rebek J, Yu Y. Chem. Commun. 2021; 57: 1543
  • 37 Ho PC, Wang JZ, Meloni F, Vargas-Baca I. Coord. Chem. Rev. 2020; 422: 213464
  • 38 Alcock N.-W. Secondary Bonding to Nonmetallic Elements. In Advances in Inorganic Chemistry and Radiochemistry, Vol. 15. Emeléus HJ, Sharpe AG. Elsevier; Amsterdam: 1972: 1-58
  • 39 Vogel L, Wonner P, Huber SM. Angew. Chem. Int. Ed. 2019; 58: 1880
  • 40 Biswal HS, Sahu AK, Galmés B, Frontera A, Chopra D. ChemBioChem 2022; 23: e202100498
  • 41 Bauzá A, Quinonero D, Deya PM, Frontera A. CrystEngComm 2013; 15: 3137
  • 42 Carugo O, Resnati G, Metrangolo P. ACS Chem. Biol. 2021; 16: 1622
  • 43 Bauzá A, Mooibroek TJ, Frontera A. ChemPhysChem 2015; 16: 2496
  • 44 Tiekink ER. Coord. Chem. Rev. 2022; 457: 214397
  • 45 Bruno IJ, Cole JC, Lommerse JP, Rowland RS, Taylor R, Verdonk ML. J. Comput. Aided Mol. Des. 1997; 11: 525
  • 46 Bruno IJ, Cole JC, Edgington PR, Kessler M, Macrae CF, McCabe P, Pearson J, Taylor R. Acta Crystallogr., Sect. B 2002; 58: 389
  • 47 Groom CR, Bruno IJ, Lightfoot MP, Ward SC. Acta Crystallogr., Sect B 2016; 72: 171
  • 48 Adhav VA, Shelke SS, Balanarayan P, Saikrishnan K. bioRxiv 2022; preprint DOI: 10.1101/2022.03.14.484196.
  • 49 Kumar V, Triglav M, Morin VM, Bryce DL. ACS Org. Inorg. Au 2022; 2: 252
  • 50 Xu Y, Szell PM, Kumar V, Bryce DL. Coord. Chem. Rev. 2020; 411: 213237
  • 51 Viger-Gravel J, Leclerc S, Korobkov I, Bryce DL. J. Am. Chem. Soc. 2014; 136: 6929
  • 52 Cerreia Vioglio P, Catalano L, Vasylyeva V, Nervi C, Chierotti MR, Resnati G, Gobetto R, Metrangolo P. Chem. Eur. J. 2016; 22: 16819
  • 53 Etter MC, MacDonald JC, Bernstein J. Acta Crystallogr., Sect. B 1990; 46: 256
  • 54 Wouters J. J. Comput. Chem. 2000; 21: 847
  • 55 Saha A, Saha BK. Cryst. Growth Des. 2019; 19: 7264
  • 56 Sedlak R, Eyrilmez SM, Hobza P, Nachtigallova D. Phys. Chem. Chem Phy. 2018; 20: 299
  • 57 Bondi A. J. Phys. Chem. 1964; 68: 441
  • 58 Krief A, Hevesi L. Organoselenium Chemistry I: Functional Group Transformations. Springer; Berlin: 2012