Subscribe to RSS
DOI: 10.1055/a-2067-7925
“Heart of the Matter”: Cardiac Dysfunction in Congenital Diaphragmatic Hernia
Funding None.

Abstract
Despite advances in caring for neonates with congenital diaphragmatic hernia (CDH), mortality and morbidity continues to be high. Additionally, the pathophysiology of cardiac dysfunction in this condition is poorly understood. Postnatal cardiac dysfunction in neonates with CDH may be multifactorial with origins in fetal life. Mechanical obstruction, competition from herniated abdominal organs into thoracic cavity combined with redirection of ductus venosus flow away from patent foramen ovale leading to smaller left-sided structures may be a contributing factor. This shunting decreases left atrial and left ventricular blood volume, which may result in altered micro- and macrovascular aberrations affecting cardiac development in the prenatal period. Direct mass effect from herniated intra-abdominal contents restricting cardiac growth and/or reduced left ventricular preload may contribute independently to left ventricular dysfunction in the absence of right ventricular dysfunction and or pulmonary hypertension. With variable clinical phenotypes of cardiac dysfunction, pulmonary hypertension, and respiratory failure in patients with CDH, there is increased need for individualized diagnosis and tailored therapy. Routine use of therapy such as inhaled nitric oxide and sildenafil that induces significant pulmonary vasodilation may be detrimental in left ventricle dysfunction, whereas in a patient with pure right ventricle dysfunction, they may be beneficial. Targeted functional echocardiography serves as a real-time tool for defining the pathophysiology and aids optimization of vasoactive therapy in affected neonates.
Key Points
-
Cardiac dysfunction in neonates with CDH is multifactorial.
-
Postnatal cardiac dysfunction in patients with CDH has its origins in fetal life.
-
Right ventricular dysfunction contributes to systemic hypotension.
-
Left ventricular dysfunction contributes to systemic hypotension.
-
Supportive therapy should be tailored to clinical phenotype.
Keywords
ventricular dysfunction - congenital diaphragmatic hernia - cardiac phenotype - cardiac function in CDHPublication History
Received: 23 March 2023
Accepted: 29 March 2023
Accepted Manuscript online:
03 April 2023
Article published online:
26 April 2023
© 2023. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Morini F, Lally PA, Lally KP, Bagolan P. The Congenital Diaphragmatic Hernia Study Group registry. Eur J Pediatr Surg 2015; 25 (06) 488-496
- 2 Chock VY, Danzer E, Chung S. et al; Congenital Diaphragmatic Hernia Study Group. In-hospital morbidities for neonates with congenital diaphragmatic hernia: the impact of defect size and laterality. J Pediatr 2022; 240: 94-101.e6
- 3 Gupta VS, Harting MT, Lally PA. et al. Mortality in congenital diaphragmatic hernia: a multicenter registry study of over 5000 patients over 25 years. Ann Surg 2021; 277 (03) 520-527
- 4 Madenci AL, Church JT, Gajarski RJ. et al. Pulmonary hypertension in patients with congenital diaphragmatic hernia: does lung size matter?. Eur J Pediatr Surg 2018; 28 (06) 508-514
- 5 Patel N, Massolo AC, Kipfmueller F. Congenital diaphragmatic hernia-associated cardiac dysfunction. Semin Perinatol 2020; 44 (01) 151168
- 6 Yu L, Hernan RR, Wynn J, Chung WK. The influence of genetics in congenital diaphragmatic hernia. Semin Perinatol 2020; 44 (01) 151169
- 7 Graziano JN. Congenital Diaphragmatic Hernia Study Group. Cardiac anomalies in patients with congenital diaphragmatic hernia and their prognosis: a report from the Congenital Diaphragmatic Hernia Study Group. J Pediatr Surg 2005; 40 (06) 1045-1049 , discussion 1049–1050
- 8 Patel N, Lally PA, Kipfmueller F. et al. Ventricular dysfunction is a critical determinant of mortality in congenital diaphragmatic hernia. Am J Respir Crit Care Med 2019; 200 (12) 1522-1530
- 9 Dao DT, Patel N, Harting MT, Lally KP, Lally PA, Buchmiller TL. Early left ventricular dysfunction and severe pulmonary hypertension predict adverse outcomes in “low-risk” congenital diaphragmatic hernia. Pediatr Crit Care Med 2020; 21 (07) 637-646
- 10 Wehrmann M, Patel SS, Haxel C. et al. Implications of atrial-level shunting by echocardiography in newborns with congenital diaphragmatic hernia. J Pediatr 2020; 219: 43-47
- 11 Patel N, Massolo AC, Paria A. et al. Early postnatal ventricular dysfunction is associated with disease severity in patients with congenital diaphragmatic hernia. J Pediatr 2018; 203: 400-407.e1
- 12 Mous DS, Kool HM, Wijnen R, Tibboel D, Rottier RJ. Pulmonary vascular development in congenital diaphragmatic hernia. Eur Respir Rev 2018; 27 (147): 170104
- 13 Siebert JR, Haas JE, Beckwith JB. Left ventricular hypoplasia in congenital diaphragmatic hernia. J Pediatr Surg 1984; 19 (05) 567-571
- 14 Byrne FA, Keller RL, Meadows J. et al. Severe left diaphragmatic hernia limits size of fetal left heart more than does right diaphragmatic hernia. Ultrasound Obstet Gynecol 2015; 46 (06) 688-694
- 15 Vogel M, McElhinney DB, Marcus E, Morash D, Jennings RW, Tworetzky W. Significance and outcome of left heart hypoplasia in fetal congenital diaphragmatic hernia. Ultrasound Obstet Gynecol 2010; 35 (03) 310-317
- 16 Baumgart S, Paul JJ, Huhta JC. et al. Cardiac malposition, redistribution of fetal cardiac output, and left heart hypoplasia reduce survival in neonates with congenital diaphragmatic hernia requiring extracorporeal membrane oxygenation. J Pediatr 1998; 133 (01) 57-62
- 17 Allan LD, Irish MS, Glick PL. The fetal heart in diaphragmatic hernia. Clin Perinatol 1996; 23 (04) 795-812
- 18 Stressig R, Fimmers R, Axt-Fliedner R, Gembruch U, Kohl T. Association of intrathoracic herniation of the liver with left heart hypoplasia in fetuses with a left diaphragmatic hernia but not in fetuses with a right diaphragmatic hernia. Ultraschall Med 2011; 32 (2, suppl 2): E151-E156
- 19 Pinsky MR. The right ventricle: interaction with the pulmonary circulation. Crit Care 2016; 20 (01) 266
- 20 van Wolferen SA, Marcus JT, Westerhof N. et al. Right coronary artery flow impairment in patients with pulmonary hypertension. Eur Heart J 2008; 29 (01) 120-127
- 21 Sharifi Kia D, Kim K, Simon MA. Current understanding of the right ventricle structure and function in pulmonary arterial hypertension. Front Physiol 2021; 12: 641310
- 22 Patel N, Mills JF, Cheung MM. Assessment of right ventricular function using tissue Doppler imaging in infants with pulmonary hypertension. Neonatology 2009; 96 (03) 193-199 , discussion 200–202
- 23 Moenkemeyer F, Patel N. Right ventricular diastolic function measured by tissue Doppler imaging predicts early outcome in congenital diaphragmatic hernia. Pediatr Crit Care Med 2014; 15 (01) 49-55
- 24 Naeije R, Badagliacca R. The overloaded right heart and ventricular interdependence. Cardiovasc Res 2017; 113 (12) 1474-1485
- 25 Massolo AC, Paria A, Hunter L, Finlay E, Davis CF, Patel N. Ventricular dysfunction, interdependence, and mechanical dispersion in newborn infants with congenital diaphragmatic hernia. Neonatology 2019; 116 (01) 68-75
- 26 Kinsella JP, Steinhorn RH, Mullen MP. et al; Pediatric Pulmonary Hypertension Network (PPHNet). The left ventricle in congenital diaphragmatic hernia: implications for the management of pulmonary hypertension. J Pediatr 2018; 197: 17-22
- 27 Patel N, Kipfmueller F. Cardiac dysfunction in congenital diaphragmatic hernia: pathophysiology, clinical assessment, and management. Semin Pediatr Surg 2017; 26 (03) 154-158
- 28 Mertens L, Seri I, Marek J. et al; Writing Group of the American Society of Echocardiography, European Association of Echocardiography, Association for European Pediatric Cardiologists. Targeted neonatal echocardiography in the neonatal intensive care unit: practice guidelines and recommendations for training. Writing Group of the American Society of Echocardiography (ASE) in collaboration with the European Association of Echocardiography (EAE) and the Association for European Pediatric Cardiologists (AEPC). J Am Soc Echocardiogr 2011; 24 (10) 1057-1078
- 29 Cohen MS, Rychik J, Bush DM. et al. Influence of congenital heart disease on survival in children with congenital diaphragmatic hernia. J Pediatr 2002; 141 (01) 25-30
- 30 Altit G, Bhombal S, Van Meurs K, Tacy TA. Diminished cardiac performance and left ventricular dimensions in neonates with congenital diaphragmatic hernia. Pediatr Cardiol 2018; 39 (05) 993-1000
- 31 Bialkowski A, Moenkemeyer F, Patel N. Intravenous sildenafil in the management of pulmonary hypertension associated with congenital diaphragmatic hernia. Eur J Pediatr Surg 2015; 25 (02) 171-176
- 32 Kipfmueller F, Schroeder L, Berg C, Heindel K, Bartmann P, Mueller A. Continuous intravenous sildenafil as an early treatment in neonates with congenital diaphragmatic hernia. Pediatr Pulmonol 2018; 53 (04) 452-460
- 33 Lawrence KM, Monos S, Adams S. et al. Inhaled nitric oxide is associated with improved oxygenation in a subpopulation of infants with congenital diaphragmatic hernia and pulmonary hypertension. J Pediatr 2020; 219: 167-172
- 34 Putnam LR, Tsao K, Morini F. et al; Congenital Diaphragmatic Hernia Study Group. Evaluation of variability in inhaled nitric oxide use and pulmonary hypertension in patients with congenital diaphragmatic hernia. JAMA Pediatr 2016; 170 (12) 1188-1194
- 35 Stocker CF, Shekerdemian LS, Nørgaard MA. et al. Mechanisms of a reduced cardiac output and the effects of milrinone and levosimendan in a model of infant cardiopulmonary bypass. Crit Care Med 2007; 35 (01) 252-259
- 36 Patel N. Use of milrinone to treat cardiac dysfunction in infants with pulmonary hypertension secondary to congenital diaphragmatic hernia: a review of six patients. Neonatology 2012; 102 (02) 130-136
- 37 Giaccone A, Kirpalani H. Judgment often impossible without randomized trials. Commentary on N. Patel: use of milrinone to treat cardiac dysfunction in infants with pulmonary hypertension secondary to congenital diaphragmatic hernia: a review of six patients (Neonatology 2012;102:130–136). Neonatology 2012; 102 (02) 137-138
- 38 Lakshminrusimha S, Keszler M, Kirpalani H. et al. Milrinone in congenital diaphragmatic hernia - a randomized pilot trial: study protocol, review of literature and survey of current practices. Matern Health Neonatol Perinatol 2017; 3: 27
- 39 Lawrence KM, Berger K, Herkert L. et al. Use of prostaglandin E1 to treat pulmonary hypertension in congenital diaphragmatic hernia. J Pediatr Surg 2019; 54 (01) 55-59
- 40 Schroeder L, Gries K, Ebach F, Mueller A, Kipfmueller F. Exploratory assessment of levosimendan in infants with congenital diaphragmatic hernia. Pediatr Crit Care Med 2021; 22 (07) e382-e390
- 41 Acker SN, Kinsella JP, Abman SH, Gien J. Vasopressin improves hemodynamic status in infants with congenital diaphragmatic hernia. J Pediatr 2014; 165 (01) 53-58.e1
- 42 Loh E, Lankford EB, Polidori DJ, Doering-Lubit EB, Hanson CW, Acker MA. Cardiovascular effects of inhaled nitric oxide in a canine model of cardiomyopathy. Ann Thorac Surg 1999; 67 (05) 1380-1385
- 43 Cairo SB, Arbuthnot M, Boomer LA. et al; American Pediatric Surgical Association, Surgical Critical Care Committee. Controversies in extracorporeal membrane oxygenation (ECMO) utilization and congenital diaphragmatic hernia (CDH) repair using a Delphi approach: from the American Pediatric Surgical Association Critical Care Committee (APSA-CCC). Pediatr Surg Int 2018; 34 (11) 1163-1169
- 44 Rafat N, Schaible T. Extracorporeal membrane oxygenation in congenital diaphragmatic hernia. Front Pediatr 2019; 7: 336
- 45 Seetharamaiah R, Younger JG, Bartlett RH, Hirschl RB. Congenital Diaphragmatic Hernia Study Group. Factors associated with survival in infants with congenital diaphragmatic hernia requiring extracorporeal membrane oxygenation: a report from the Congenital Diaphragmatic Hernia Study Group. J Pediatr Surg 2009; 44 (07) 1315-1321
- 46 Kays DW. ECMO in CDH: is there a role?. Semin Pediatr Surg 2017; 26 (03) 166-170
- 47 Tanaka T, Inamura N, Ishii R. et al. The evaluation of diastolic function using the diastolic wall strain (DWS) before and after radical surgery for congenital diaphragmatic hernia. Pediatr Surg Int 2015; 31 (10) 905-910
- 48 Avitabile CM, Wang Y, Zhang X. et al. Right ventricular strain, brain natriuretic peptide, and mortality in congenital diaphragmatic hernia. Ann Am Thorac Soc 2020; 17 (11) 1431-1439
- 49 Egan MJ, Husain N, Stines JR. et al. Mid-term differences in right ventricular function in patients with congenital diaphragmatic hernia compared with controls. World J Pediatr 2012; 8 (04) 350-354
- 50 Deprest JA, Nicolaides KH, Benachi A. et al; TOTAL Trial for Severe Hypoplasia Investigators. Randomized trial of fetal surgery for severe left diaphragmatic hernia. N Engl J Med 2021; 385 (02) 107-118
- 51 Van Mieghem T, Gucciardo L, Doné E. et al. Left ventricular cardiac function in fetuses with congenital diaphragmatic hernia and the effect of fetal endoscopic tracheal occlusion. Ultrasound Obstet Gynecol 2009; 34 (04) 424-429
- 52 Dhillon GS, Maskatia SA, Loar RW. et al. The impact of fetal endoscopic tracheal occlusion in isolated left-sided congenital diaphragmatic hernia on left-sided cardiac dimensions. Prenat Diagn 2018; 38 (11) 812-820
- 53 Degenhardt J, Enzensberger C, Tenzer A. et al. Myocardial function pre- and post-fetal endoscopic tracheal occlusion (FETO) in fetuses with left-sided moderate to severe congenital diaphragmatic hernia. Ultraschall Med 2017; 38 (01) 65-70
- 54 Rocha LA, Byrne FA, Keller RL. et al. Left heart structures in human neonates with congenital diaphragmatic hernia and the effect of fetal endoscopic tracheal occlusion. Fetal Diagn Ther 2014; 35 (01) 36-43
- 55 Cannata G, Caporilli C, Grassi F, Perrone S, Esposito S. Management of congenital diaphragmatic hernia (CDH): role of molecular genetics. Int J Mol Sci 2021; 22 (12) 6353
- 56 Holder AM, Klaassens M, Tibboel D, de Klein A, Lee B, Scott DA. Genetic factors in congenital diaphragmatic hernia. Am J Hum Genet 2007; 80 (05) 825-845