Synlett 2024; 35(03): 342-346
DOI: 10.1055/a-2131-3368
cluster
Organic Chemistry Under Visible Light: Photolytic and Photocatalytic Organic Transformations

Iron-Catalyzed Oxidative Decarboxylation of Oxamic Acids: A Safe and Efficient Photochemical Route to Urethanes

Gülbin Kurtay
a   University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400, Talence, France
b   Department of Chemistry, Faculty of Science, Hacettepe University, Beytepe, 06800, Çankaya, Ankara, Turkey
,
Jonathan Lusseau
a   University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400, Talence, France
,
Frédéric Robert
a   University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400, Talence, France
,
a   University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400, Talence, France
› Author Affiliations
G.K. thanks the TUBITAK BIDEB-2219 program for a postdoctoral grant (1059B191900553). The Agence Nationale de la Recherche (ANR) (NCO-INNOV, No. 20-CE07-0015-01), the University of Bordeaux (UB), and the CNRS are gratefully acknowledged for their financial support.


Abstract

This study presents a facile method for synthesizing urethanes through the photocatalyzed oxidative decarboxylation of oxamic acids. The process involves the formation of an isocyanate in situ from an oxamic acid under blue-light irradiation (427 nm) in the presence of ferrocene as a photocatalyst, 2-picolinic acid as a ligand, and potassium bromate as an oxidant. The one-pot procedure effectively avoids the need for separation, purification, and storage of carcinogenic isocyanates, making it a safer and more practical method for obtaining target urethanes from easily accessible starting materials.

Supporting Information



Publication History

Received: 23 May 2023

Accepted after revision: 17 July 2023

Accepted Manuscript online:
17 July 2023

Article published online:
07 September 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Ghosh AK, Brindisi M. J. Med. Chem. 2015; 58: 2895 ; and references therein
  • 2 Cho CY, Moran EJ, Cherry SR, Stephans JC, Fodor SP, Adams CL, Sundaram A, Jacobs JW, Shultz PG. Science 1993; 261: 1303
    • 3a Vacondio F, Silva C, Mor M, Testa B. Drug Metab. Rev. 2010; 42: 551
    • 3b Testa B, Mayer JM. Hydrolysis in Drug and Prodrug Metabolism: Chemistry, Biochemistry, and Enzymology. Wiley-VCH; Weinheim: 2003
  • 4 Greene TW, Wuts PG. M. Protective Groups in Organic Synthesis, 3rd ed. Wiley-Interscience; New York: 1999. 503
    • 5a Akindoyo JO, Beg MD. H, Ghazali S, Islam MR, Jeyaratnama N, Yuvaraj AR. RSC Adv. 2016; 6: 114453
    • 5b Kreye O, Mutlu H, Meier MA. R. Green Chem. 2013; 15: 1431
    • 6a Ozaki S. Chem. Rev. 1972; 72: 457
    • 6b Bayer O. Angew. Chem. 1947; 59: 257
    • 6c Bayer O, Müller E. Angew. Chem. 1960; 72: 934
  • 7 Maisonneuve L, Lamarzelle O, Rix E, Grau E, Cramail H. Chem. Rev. 2015; 115: 12407
    • 8a Chaturvedi D, Ray S. Monatsh. Chem. 2006; 137: 127
    • 8b Sakakura T, Saito Y, Okano M, Choi J, Sako T. J. Org. Chem. 1998; 63: 7095
    • 8c Abla M, Chol JC, Sakakura T. Chem. Commun. 2001; 2238
    • 8d Yoshida Y, Ishii S, Yamashita T. Chem. Lett. 1984; 13: 1571
    • 8e Cenini S, Crotti C, Pizzotti M, Porta F. J. Org. Chem. 1988; 53: 1243
    • 8f Salvatore RN, Ledger JA, Jung KW. Tetrahedron Lett. 2001; 42: 6023
    • 8g Waldman TE, McGhee WD. J. Chem. Soc., Chem. Commun. 1994; 957
    • 8h Yoshida M, Hara N, Okuyama S. Chem. Commun. 2000; 151
  • 9 Pawar GG, Robert F, Grau E, Cramail H, Landais Y. Chem. Commun. 2018; 54: 9337
    • 10a Minisci F, Coppa F, Fontana F. J. Chem. Soc., Chem. Commun. 1994; 679
    • 10b Minisci F, Fontana F, Coppa F, Yan YM. J. Org. Chem. 1995; 60: 5430

      For reviews on the generation of carbamoyl radicals, see:
    • 11a Chatgilialoglu C, Crich D, Komatsu M, Ryu I. Chem. Rev. 1999; 99: 1991
    • 11b Ogbu IM, Kurtay G, Robert F, Landais Y. Chem. Commun. 2022; 58: 7593
    • 11c Matsuo BT, Oliveira PH. R, Pissinati EF, Vega KB, de Jesus IS, Correia JT. M, Paixao M. Chem. Commun. 2022; 58: 8322
  • 12 Ogbu IM, Bassani DM, Robert F, Landais Y. Chem. Commun. 2022; 58: 8802
    • 13a Ogbu IM, Lusseau J, Kurtay G, Robert F, Landais Y. Chem. Commun. 2020; 56: 12226
    • 13b Petti A, Fagnan C, van Melis CG. W, Tanbouza N, Garcia AD, Mastrodonato A, Leech MC, Goodall IC. A, Dobbs AP, Ollevier T, Lam K. Org. Process Res. Dev. 2021; 25: 2614
    • 13c Lai X.-L, Shu X.-M, Song J, Xu H.-C. Angew. Chem. Int. Ed. 2020; 59: 10626
  • 14 Ogbu IM, Kurtay G, Badufle M, Robert F, Silva Lopez C, Landais Y. Chem. Eur. J. 2023; 29: e202202963
    • 15a Šima J, Makáňová J. Coord. Chem. Rev. 1997; 160: 161
    • 15b Chen J, Browne WR. Coord. Chem. Rev. 2018; 374: 15
  • 16 Balzani V, Ceroni P, Juris A. Photochemistry and Photophysics: Concepts, Research, Applications. Wiley-VCH; Weinheim: 2014
    • 17a Reichle A, Sterzel H, Kreitmeier P, Fayad R, Castellano FN, Rehbein J, Reiser O. Chem. Commun. 2022; 58: 4456
    • 17b Dow NW, Pedersen PS, Chen TQ, Blakemore DC, Dechert-Schmitt A.-M, Knauber T, MacMillan DW. C. J. Am. Chem. Soc. 2022; 144: 6163
    • 17c Chen TQ, Pedersen PS, Dow NW, Fayad R, Hauke CE, Rosko MC, Danilov EO, Blakemore DC, Dechert-Schmitt A.-M, Knauber T, Castellano FN, MacMillan DW. C. J. Am. Chem. Soc. 2022; 144: 8296
    • 17d Xu P, Su W, Ritter T. Chem. Sci. 2022; 13: 13611
    • 18a Sugimori A, Yamada T. Bull. Chem. Soc. Jpn. 1986; 59: 3911
    • 18b Sugimori A, Yamada T. Chem. Lett. 1986; 15: 409
    • 19a Li Z, Wang X, Xia S, Jin J. Org. Lett. 2019; 21: 4259
    • 19b Feng G, Wang X, Jin J. Eur. J. Org. Chem. 2019; 6728
    • 19c Lu Y.-C, West JG. Angew. Chem. Int. Ed. 2023; 62: e202213055
    • 19d Lutovsky GA, Gockel SN, Bundesmann MW, Bagley SW, Yoon TP. Chem 2023; 9: 1610
    • 19e Kao S.-C, Bian K.-J, Chen X.-W, Chen Y, Marti AA, West JG. Chem Catal. 2023; 3: 100603
    • 20a Balavoine G, Barton DH. R, Boivin I, Gref A. Tetrahedron Lett. 1990; 31: 659
    • 20b Tanaka S, Kon Y, Ogawa A, Uesaka Y, Tamura M, Sato K. ChemCatChem 2016; 8: 2930
  • 21 Wissman HG, Rand L, Frisch KC. J. Appl. Polym. Sci. 1964; 8: 2971
  • 22 Carbamates 2a–v; General Procedure A 10 mL vial equipped with a Teflon septum and a magnetic stirrer bar was charged with the appropriate oxamic acid 1 (1.0 equiv, 0.5 mmol), ferrocene (2.5 mol%, 0.0125 mmol), 2-picolinic acid (5.0 mol%, 0.0250 mmol), and KBrO3 (2 equiv, 1.0 mmol). The vial was then degassed with N2 for about 10 min using an outlet needle before distilled dried DCE (5 mL) and the appropriate alcohol ROH (2.0 equiv, 1.0 mmol) were added. The purge process was repeated by sparging with N2 for 5 min, and then the reaction vial was irradiated with a Kessil lamp (40 W, 427 nm LEDs) at a distance of 5 cm for 24 h. When the reaction was complete, the crude product was collected by evaporation of the mixture and purified by flash chromatography (silica gel, usually EtOAc–hexane). Ethyl (4-Methylbenzyl)carbamate (2a) White solid; yield: 85 mg (87%); mp 55–57 °C (EtOAc–hexane, 10:90); Rf = 0.28 (EtOAc–hexane, 10:90). FTIR (KBr): 3352, 2924, 1948, 1708, 1451, 1248, 1132, 1036, 797, 469 cm–1. 1H NMR (300 MHz, CDCl3): δ = 7.15 (t, J = 6.9 Hz, 4 H), 4.94 (s, 1 H), 4.32 (d, J = 5.9 Hz, 2 H), 4.14 (q, J = 7.1 Hz, 2 H), 2.33 (s, 3 H), 1.25 (t, J = 7.1 Hz, 3 H). 13C NMR (76 MHz, CDCl3): δ = 156.8, 137.2, 135.7, 129.4, 127.6, 61.0, 44.9, 21.2, 14.8. HRMS (ESI): m/z [M + Na]+ calcd for C11H15NNaO2: 216.09950; found: 216.09890.