Synlett 2024; 35(03): 352-356
DOI: 10.1055/a-2153-6594
cluster
Organic Chemistry Under Visible Light: Photolytic and Photocatalytic Organic Transformations

Desulfonylative Radical Truce–Smiles Rearrangement Utilizing the Benzimidazoline and Benzimidazolium Redox Couple

Ryo Miyajima
a   Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
,
Manon Okamura
a   Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
,
Kazuki Oomori
a   Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
,
Hajime Iwamoto
a   Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
,
Kan Wakamatsu
b   Department of Chemistry, Faculty of Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
,
Eietsu Hasegawa
a   Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
› Author Affiliations
This study was supported by the Japan Society for the Promotion of Science (JSPS KAKENHI, Grant JP 19K05435 for E.H.).


This letter is dedicated to Professor Dennis P. Curran (University of Pittsburgh), who is a distinguished chemist for synthetic application of free radical chemistry, on the occasion of his Koki anniversary (70th birthday).

Abstract

We have developed protocols for promoting redox reactions utilizing the 2-substituted 1,3-dimethylbenzimidazoline (BIH–R) and benzimidazolium (BI+–R) couples which were applied to the desulfonylative radical Truce–Smiles rearrangement. Expected rearrangement products formed in modest to good yields in these processes, in which added or in situ generated BIH–R serve as electron- and hydrogen-atom-donating reagents or photocatalysts. DFT calculations were carried out to gain the information about the radical intermediates involved in the rearrangement reaction.

Supporting Information



Publication History

Received: 30 May 2023

Accepted after revision: 14 August 2023

Accepted Manuscript online:
14 August 2023

Article published online:
19 September 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Eberson L. Electron Transfer Reactions in Organic Chemistry. Springer; Berlin: 1987
    • 1b Photoinduced Electron Transfer, Parts A–D. Fox MA, Chanon M. Elsevier; Amsterdam: 1988
    • 1c Advances in Electron Transfer Chemistry, Vol. 1–6. Mariano PS. JAI; Greenwich: 1991
    • 1d Kavarnos GJ. Fundamental of Photoinduced Electron Transfer. VCH; New York: 1993
    • 1e Connelly NG, Geiger WE. Chem. Rev. 1996; 96: 877
    • 1f Electron Transfer in Chemistry, Vol. 1–5. Balzani V. Wiley-VCH; Weinheim: 2001
    • 1g Organic Electrochemistry, 4th ed. Lund H, Hammerich O. Marcel Dekker; New York: 2001
    • 1h Fukuzumi S. Electron Transfer: Mechanisms and Applications . Wiley-VCH; Weinheim: 2020
    • 2a Schmittel M, Burghart A. Angew. Chem., Int. Ed. Engl. 1997; 36: 2550
    • 2b Berger DJ, Tanko JM. The Chemistry of Double-Bonded Functional Groups . Patai S. Wiley; New York: 1997: 1281
    • 2c Roth HD. Reactive Intermediate Chemistry . Moss RA, Platz MS, Jones MJr. Wiley; Hoboken: 2004: 205
    • 2d Todres ZV. Ion-Radical Organic Chemistry Principles and Applications, 2nd ed. CRC Press; Boca Raton: 2009
    • 2e Zhang N, Samanta SR, Rosen BM, Percec V. Chem. Rev. 2014; 114: 5848
    • 2f Studer A, Curran DP. Nat. Chem. 2014; 6: 765
    • 2g Lee KN, Ngai M.-Y. Chem. Commun. 2017; 53: 13093
    • 2h Syroeshkin MA, Kuriakose F, Saverina EA, Timofeeva VA, Egorov MP, Alabugin IV. Angew. Chem. Int. Ed. 2019; 58: 5532
    • 2i Peter A, Agasti S, Knowles O, Pye E, Procter DJ. Chem. Soc. Rev. 2021; 50: 5349
  • 3 Zhu X.-Q, Zhang M.-T, Yu A, Wang C.-H, Cheng J.-P. J. Am. Chem. Soc. 2008; 130: 2501
    • 4a Chikashita H, Itoh K. Bull. Chem. Soc. Jpn. 1986; 59: 1747
    • 4b Ramos SM, Tarazi M, Wuest JD. J. Org. Chem. 1987; 52: 5437
    • 4c Chen J, Tanner DD. J. Org. Chem. 1988; 53: 3897
    • 4d Hasegawa E, Kato T, Kitazume T, Yanagi K, Hasegawa K, Horaguchi T. Tetrahedron Lett. 1996; 37: 7079
    • 4e Lee I.-SH, Jeoung EH, Kreevoy MM. J. Am. Chem. Soc. 1997; 119: 2722
    • 4f Schwarz DE, Cameron TM, Hay PJ, Scott BL, Tumas W, Thorn DL. Chem. Commun. 2005; 5919
    • 4g Wei P, Oh JH, Dong G, Bao Z. J. Am. Chem. Soc. 2010; 132: 8852
    • 4h Tamaki Y, Koike K, Morimoto T, Ishitani O. J. Catal. 2013; 304: 22
    • 4i Horn M, Schappele LH, Lang-Wittkowski G, Mayr H, Ofial AR. Chem. Eur. J. 2013; 19: 249
    • 4j Kim SS, Bae S, Jo WH. Chem. Commun. 2015; 51: 17413
    • 4k Hasegawa E, Takizawa S. Aust. J. Chem. 2015; 68: 1640
    • 4l Zhang Y, Petersen JL, Milsmann CA. J. Am. Chem. Soc. 2016; 138: 13115
    • 4m Mehrotra S, Raje S, Jain AK, Angamuthu R. ACS Sustainable Chem. Eng. 2017; 5: 6322
    • 4n Iakovenko R, Hlaváč J. Green Chem. 2021; 23: 440
    • 4o Tun SL, Mariappan SV. S, Pigge FC. J. Org. Chem. 2022; 87: 8059
    • 4p Wang Y.-F, Zhang M.-T. J. Am. Chem. Soc. 2022; 144: 12459
    • 5a Ilic S, Alherz A, Musgrave CB, Glusac KD. Chem. Commun. 2019; 55: 5583
    • 5b Rohrbach S, Shah RS, Tuttle T, Murphy JA. Angew. Chem. Int. Ed. 2019; 58: 11454
    • 5c Kodama T, Kubo M, Shinji W, Ohkubo K, Tobisu M. Chem. Sci. 2020; 11: 12109
    • 5d Weerasooriya RB, Drummer MC, Phelan BT, Gesiorski JL, Sprague-Klein EA, Chen LX, Glusac KD. J. Phys. Chem. C 2022; 126: 17816
    • 5e Xie W, Xu J, Md Idros U, Katsuhira J, Fuki M, Hayashi M, Yamanaka M, Kobori Y, Matsubara R. Nat. Chem. 2023; 15: 794
    • 6a Hasegawa E, Ohta T, Tsuji S, Mori K, Uchida K, Miura T, Ikoma T, Tayama E, Iwamoto H, Takizawa S, Murata S. Tetrahedron 2015; 71: 5494
    • 6b Hasegawa E, Nagakura Y, Izumiya N, Matsumoto K, Tanaka T, Miura T, Ikoma T, Iwamoto H, Wakamatsu K. J. Org. Chem. 2018; 83: 10813
    • 6c Hasegawa E, Nakamura S, Oomori K, Tanaka T, Iwamoto H, Wakamatsu K. J. Org. Chem. 2021; 86: 2556
    • 7a Hasegawa E, Izumiya N, Miura T, Ikoma T, Iwamoto H, Takizawa S, Murata S. J. Org. Chem. 2018; 83: 3921
    • 7b Hasegawa E, Tanaka T, Izumiya N, Kiuchi T, Ooe Y, Iwamoto H, Takizawa S, Murata S. J. Org. Chem. 2020; 85: 4344
    • 7c Tanaka T, Kiuchi T, Ooe Y, Iwamoto H, Takizawa S, Murata S, Hasegawa E. ACS Omega 2022;  7: 4655
  • 8 Miyajima R, Ooe Y, Miura T, Ikoma T, Iwamoto H, Takizawa S, Hasegawa E. J. Am. Chem. Soc. 2023; 145: 10236
  • 9 Miyajima R, Kiuchi T, Ooe Y, Iwamoto H, Takizawa S, Hasegawa E. J. Photochem. Photobiol. 2023; 16: 100195
    • 10a Henderson AR. P, Kosowan JR, Wood TE. Can. J. Chem. 2017; 95: 483
    • 10b Holden CM, Greaney MF. Chem. Eur. J. 2017; 23: 8992
    • 11a Huynh M, De Abreu M, Belmont P, Brachet E. Chem. Eur. J. 2021; 27: 3581
    • 11b Allen AR, Noten EA, Stephenson CR. J. Chem. Rev. 2022; 122: 2695
  • 12 Li Y, Hu B, Dong W, Xie X, Wan J, Zhang Z. J. Org. Chem. 2016; 81: 7036
  • 13 Hasegawa E, Yoshioka N, Tanaka T, Nakaminato T, Oomori K, Ikoma T, Iwamoto H, Wakamatsu K. ACS Omega 2020; 5: 7651
  • 14 Typical Reaction Procedures (a) Reaction of 2b Utilizing 1e-H (Scheme [4]) A solution of 2b (41.7 mg, 0.10 mmol), 1e-H (58.7 mg, 0.15 mmol), and AcOH (11.5 μL, 0.20 mmol) in N2 pre-purged DMF (2.0 mL) was stirred at room temperature for 1 h. The reaction mixture was worked-up in the manner described in the Supporting Information. No recovery of 2b (conv. 100%) and the yield of 3b (0.070 mmol, 70%) were determined by 1H NMR spectroscopy (Figure S6).(b) Photocatalytic Reaction of 2d Utilizing 1f·ClO4(Scheme [6]) An N2 pre-purged solution of 2d (41.5 mg, 0.10 mmol), 1f·ClO4 (13.0 mg, 0.02 mmol), pic-BH3 (15.1 mg, 0.12 mmol), and AcOH (28.6 μL, 0.50 mmol) in DMF (2.0 mL) was irradiated with Xe lamp at room temperature for 1 h. The photolysate was worked-up in the manner described in the Supporting Information. No recovery of 2d (conv. 100%) and the yield of 3d (0.060 mmol, 60%) were determined by 1H NMR spectroscopy (Figure S14).
  • 15 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA. Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ. Gaussian 16, Revision C.01. Gaussian, Inc; Wallingford CT (USA): 2016
    • 16a Anderse ML, Mathivanan N, Wayner DD. M. J. Am. Chem. Soc. 1996; 118: 4871
    • 16b Andrieux CP, Savéant J.-M, Tallec A, Tardivel R, Tardy C. J. Am. Chem. Soc. 1996; 118: 9788
    • 16c Andrieux CP, Savéant J.-M, Tallec A, Tardivel R, Tardy C. J. Am. Chem. Soc. 1997; 119: 2420
    • 16d Anderse ML, Long W, Wayner DD. M. J. Am. Chem. Soc. 1997; 119: 6590