Synlett 2024; 35(02): 240-244
DOI: 10.1055/a-2182-7532
letter

Diastereoselective Cross-Dehydrogenative Coupling Reactions of Amides with Diarylmethanes Using DDQ through Oxidative C–H Benzylic Activation

Nagisa Kimura
,
Kenya Nakata
This work was supported by JSPS KAKENHI Grant Number JP20K05495.


Abstract

This study reports the chiral-auxiliary-controlled diastereoselective dehydrogenative coupling of diarylmethanes with amides by using 2,3-dichloro-5,6-dicyano-1,4-benzoquinone as the oxidant. The scope of the proposed reaction is very broad, with a wide variety of substrates and nucleophiles being applicable. The chiral induction can be attributed to the coordination of the oxygen atom on the chiral auxiliary with the carbocation intermediates.

Supporting Information



Publication History

Received: 04 August 2023

Accepted after revision: 27 September 2023

Accepted Manuscript online:
27 September 2023

Article published online:
02 November 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes


    • For selected reviews, see:
    • 1a Li C.-J. Acc. Chem. Res. 2009; 42: 335
    • 1b Scheuermann CJ. Chem. Asian J. 2010; 5: 436
    • 1c Yeung CS, Dong VM. Chem. Rev. 2011; 111: 1215
    • 1d Sun C.-L, Li B.-J, Shi Z.-J. Chem. Rev. 2011; 111: 1293
    • 1e Guo S.-r, Kumar PS, Yang M. Adv. Synth. Catal. 2017; 359: 2
    • 1f Liu Y, Yi H, Lei A. Chin. J. Chem. 2018; 36: 692
    • 1g Huang C.-Y, Kang H, Li J, Li C.-J. J. Org. Chem. 2019; 84: 12705
    • 1h Bosque I, Chinchilla R, Gonzalez-Gomez JC, Guijarro D, Alonso F. Org. Chem. Front. 2020; 7: 1717
    • 1i Batra A, Singh KN. Eur. J. Org. Chem. 2020; 2020: 6676
    • 1j Batra A, Singh P, Singh KN. Asian J. Org. Chem. 2021; 10: 1024
    • 1k Miller JL, Lawrence J.-MI. A, Rodriguez del Rey FO, Floreancig PE. Chem. Soc. Rev. 2022; 51: 5660
  • 2 For a review, see: Wendlandt AE, Stahl SS. Angew. Chem. Int. Ed. 2015; 54: 14638

    • For examples, see:
    • 3a Zhang Y, Li C.-J. J. Am. Chem. Soc. 2006; 128: 4242
    • 3b Tu W, Liu L, Floreancig PE. Angew. Chem. Int. Ed. 2008; 47: 4184
    • 3c Cheng D, Bao W. Adv. Synth. Catal. 2008; 350: 1263
    • 3d Li Y, Bao W. Adv. Synth. Catal. 2009; 351: 865
    • 3e Jin J, Li Y, Wang Z.-j, Qian W.-x, Bao W.-l, Concise A. Eur. J. Org. Chem. 2010; 2010: 1235
    • 3f Muramatsu W, Nakano K, Li C.-J. Org. Lett. 2013; 15: 3650
    • 3g Liu J, Zhang H, Yi H, Liu C, Lei A. Sci. China: Chem. 2015; 58: 1323
    • 3h Cheng D, Wu L, Deng Z, Xu X, Yan J. Adv. Synth. Catal. 2017; 359: 4317
    • 3i Kim HP, Yu H, Kim H, Kim S.-H, Lee D. Molecules 2018; 23: 3223
    • 3j Deng Z, Cheng D, Xu X, Yan J. Asian J. Org. Chem. 2019; 8: 283
    • 3k Cheng D, Wang M, Deng Z, Yan X, Xu X, Yan J. Eur. J. Org. Chem. 2019; 2019: 4589
    • 3l Zhang Y, Wang L, Wang Z, Chen W. Tetrahedron 2019; 75: 130516
    • 3m Cheng D, Deng Z, Yan X, Wang M, Xu X, Yan J. Adv. Synth. Catal. 2019; 361: 5025
    • 3n Liu S, Chen R, He G, Zhang J. Molecules 2020; 25: 1527
    • 3o Yu H, Kim H, Baek S.-H, Lee D. Front. Chem. 2020; 8: 629
    • 3p Cheng D, Yan X, Pu Y, Shen J, Xu X, Yan J. Eur. J. Org. Chem. 2021; 944
    • 3q Cheng D, Shen Y, Wu Z, Xu X, Yan J. J. Org. Chem. 2021; 86: 8563
    • 3r Tao Y, Gu H, Xia H, Yang H, Li J, Xu X, Cheng D. Eur. J. Org. Chem. 2023; 26: e202201480

      For examples, see:
    • 4a Li Y.-Z, Li B.-J, Lu X.-Y, Lin S, Shi Z.-J. Angew. Chem. Int. Ed. 2009; 48: 3817
    • 4b Correia CA, Li C.-J. Adv. Synth. Catal. 2010; 352: 1446
    • 4c Qin C, Zhou W, Chen F, Ou Y, Jiao N. Angew. Chem. Int. Ed. 2011; 50: 12595
    • 4d Fu L, Yao C.-J, Chang N.-J, Chen J.-R, Lu L.-Q, Xiao W.-J. Org. Biomol. Chem. 2012; 10: 506
    • 4e Zhou J, Li T, Li M, Li C, Hu X, Jin L, Sun N, Hu B, Shen Z. Asian J. Org. Chem. 2021; 10: 549
    • 4f Diao H, Wang C, Zhang Z, Shi Z, Liu F. Helv. Chim. Acta 2021; 104: e2100056

      For examples, see:
    • 5a Kumar V, Sharma A, Sharma M, Sharm UK, Sinha AK. Tetrahedron 2007; 63: 9718
    • 5b Yi H, Liu Q, Liu J, Zeng Z, Yang Y, Lei A. ChemSusChem 2012; 5: 2143
    • 5c Cheng D, Yuan K, Xu X, Yan J. Tetrahedron Lett. 2015; 56: 1641
    • 5d Song C, Dong X, Yi H, Chiang C.-W, Lei A. ACS Catal. 2018; 8: 2195
    • 5e Pan D, Pan Z, Hu Z, Li M, Hu X, Jin L, Sun N, Hu B, Shen Z. Eur. J. Org. Chem. 2019; 2019: 5650
    • 7a Suzuki N, Tsuchihashi S, Nakata K. Tetrahedron Lett. 2016; 57: 1456
    • 7b Oda R, Nakata K. Asian J. Org. Chem. 2020; 9: 1234
    • 7c Oda R, Nakata K. Eur. J. Org. Chem. 2021; 2021: 295
    • 8a Suzuki N, Nakata K. Eur. J. Org. Chem. 2017; 2017: 7075
    • 8b Fujihara R, Nakata K. Eur. J. Org. Chem. 2018; 2018: 6566
    • 8c Yamamoto H, Nakata K. Org. Lett. 2018; 20: 7057
    • 8d Kubo R, Nakata K. Asian J. Org. Chem. 2019; 8: 119
    • 8e Yamamoto H, Nakata K. Eur. J. Org. Chem. 2019; 2019: 4906
    • 8f Kubo R, Yamamoto H, Nakata K. Eur. J. Org. Chem. 2019; 2019: 7394
    • 8g Oda R, Yamamoto H, Nakata K. Asian J. Org. Chem. 2021; 10: 3266

      For examples, see:
    • 9a Gnas Y, Glorius F. Synlett 2006; 1899
    • 9b Diaz-Muñoz G, Miranda IL, Sartori SK, de Rezende DC, Alves Noguiera Diaz M. Chirality 2019; 31: 776
  • 10 N-[(R)-{2-[(1S)-2-methoxy-1-phenylethoxy]phenyl}(phenyl)methyl]benzamide (2a);8d Typical Procedure (Table [2], Entry 1) Benzamide (3) (27.8 mg, 0.23 mmol) and DDQ (41.6 mg, 0.18 mmol) were added successively to a mixture of diarylmethane 1a (48.4 mg, 0.15 mmol) and 3 Å MS (100 mg) in DCE (0.5 mL) at r.t. DCE (1.0 mL) was then added to the mixture by flowing it down the wall of the flask. The resulting mixture was refluxed in an oil bath (100 °C) for 24 h, and then the reaction was quenched with sat. aq NaHCO3 at 0 °C. The resulting mixture was diluted with CH2Cl2, and the organic layer was separated. The aqueous layer was extracted with EtOAc, and the organic layers were combined, dried (Na2SO4), filtered, and concentrated to give a crude product that was purified by preparative TLC (silica gel, hexane–EtOAc, 4:1) to give a pale-yellow oil; yield: 61.7 mg (92%, dr = 91:9). The major diastereomer was separated from the minor diastereomer by three cycles of preparative TLC (silica gel, hexane–EtOAc, 4:1). 1H NMR (500 MHz, CDCl3): δ = 7.89–7.82 (m, 3 H), 7.51–7.45 (m, 1 H), 7.42–7.37 (m, 3 H), 7.35–7.30 (m, 4 H), 7.28–7.24 (m, 4 H), 7.20–7.16 (m, 2 H), 7.14–7.09 (m, 1 H), 6.93 (dt, J = 1.0, 7.5 Hz, 1 H), 6.72–6.66 (m, 2 H), 5.23 (t, J = 5.0, 4.5 Hz, 1 H), 3.55 (dd, J = 10.0, 5.0 Hz, 1 H), 3.43 (dd, J = 10.0, 4.5 Hz, 1 H), 3.18 (s, 3 H). 13C{1H} NMR (126 MHz, CDCl3): δ = 166.2, 155.3, 142.0, 138.2, 134.3, 131.4, 129.8, 129.3, 128.8, 128.6, 128.4, 128.2, 128.1, 127.0, 126.8, 126.7, 126.4, 121.0, 113.5, 78.8, 76.1, 59.1, 55.1. 1 mmol-Scale Synthesis of 2a Prepared as above from diarylmethane 1a (319.4 mg, 1.00 mmol), benzamide (3; 182.3 mg, 1.50 mmol), DDQ (273.3 mg, 1.20 mmol), and 3 Å MS (650 mg) in DCE (4.0 mL + 6 mL); yield: 375.5 mg (86%, dr = 91:9). The major diastereomer was separated from the minor diastereomer by preparative TLC as above to give a pale yellowish viscous oil; yield: 313.2 mg (71%).
  • 11 Morales-Rivera CA, Floreancig PE, Liu P. J. Am. Chem. Soc. 2017; 139: 17935