Synlett 2024; 35(08): 840-850
DOI: 10.1055/a-2193-2682
account
Special Issue dedicated to Keith Fagnou

Photoredox-Catalyzed C(sp2)–H Bond Functionalization Reactions: A Short Account

Jinling Li
a   College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou, 450001, P. R. of China
,
Junjie Zhao
a   College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou, 450001, P. R. of China
,
Teck-Peng Loh
a   College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou, 450001, P. R. of China
b   Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore, Singapore
› Author Affiliations
We gratefully acknowledge the financial support from the Training Plan for Young Backbone Teachers in Higher Education Institutions of Henan Province in 2019 (2019GGJS093). We also gratefully acknowledge the financial support from the Distinguished University Professor grant (Nanyang Technological University), AcRF Tier 1 grants from the Ministry of Education of Singapore (RG11/20 and RT14/20), and the Agency for Science, Technology and Research (A*STAR) under its MTC Individual Research Grants (M21K2c0114).


Abstract

Photoredox catalysis has been undergoing rapid development and wide application in the chemical community during the past several years because of its advantages for reaction engineering. Since 2016, Loh et al. started their research on photoredox-catalyzed reaction transformations, including β-C(sp2)–H fluoroalkylation, alkylation, and acylation of enamides, C(sp2)–H phosphorylation of alkenes converted from alcohols, C(sp2)–H bromination, and alkylation of (hetero)arenes. These transformations introduce a broad range of structural differences on the C(sp2)–H bond of compounds with an extensive array of functional groups and showcase the appealing synthetic utilities of the approach.

1 Introduction

2 Photoredox-Catalyzed β-C(sp2)–H Functionalization of Enamides

3 Photoredox-Catalyzed C(sp2)–H Functionalization of Alkenes

4 Photoredox-Catalyzed C(sp2)–H Functionalization of (Hetero)Arenes

5 Conclusion



Publication History

Received: 03 September 2023

Accepted after revision: 17 October 2023

Accepted Manuscript online:
17 October 2023

Article published online:
27 November 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
    • 1b Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 1c Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
    • 1d Ravelli D, Protti S, Fagnoni M. Chem. Rev. 2016; 116: 9850
    • 1e Yi H, Zhang GT, Wang HM, Huang ZY, Wang J, Singh AK, Lei AW. Chem. Rev. 2017; 117: 9016
    • 1f Wang C.-S, Dixneuf PH, Soulé J.-F. Chem. Rev. 2018; 118: 7532
    • 1g Yu X.-Y, Chen J.-R, Xiao W.-J. Chem. Rev. 2021; 121: 506
    • 2a Nicewicz DA, MacMillan DW. C. Science 2008; 322: 77
    • 2b Shaw MH, Twilton J, MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
  • 3 Ischay MA, Anzovino ME, Du J, Yoon TP. J. Am. Chem. Soc. 2008; 130: 12886
  • 4 Narayanam JM. R, Tucker JW, Stephenson CR. J. J. Am. Chem. Soc. 2009; 131: 8756
  • 5 Ashley MA, Rovis T. J. Am. Chem. Soc. 2020; 142 (43) 18310
  • 6 Lu B, Zhang Z, Jiang M, Liang D, He ZW, Bao FS, Xiao W.-J, Chen J.-R. Angew. Chem. Int. Ed. 2023; 62: e202309460
    • 7a Ravelli D, Fagnoni M, Albini A. Chem. Soc. Rev. 2013; 42: 97
    • 7b Silvi M, Arceo E, Jurberg ID, Cassani C, Melchiorre P. J. Am. Chem. Soc. 2015; 137: 6120
    • 7c Lipp A, Badir SO, Molander G. Angew. Chem. Int. Ed. 2021; 60: 1714
  • 8 Allen AE, MacMillan DW. C. Chem. Sci. 2012; 3: 633
    • 9a Shee M, Singh ND. P. Catal. Sci. Technol. 2021; 11: 742
    • 9b Holmberg-Douglas N, Nicewicz DA. Chem. Rev. 2022; 122: 1925
  • 10 Bellotti P, Huang HM, Faber T, Glorius F. Chem. Rev. 2023; 123: 4237
  • 11 Davies HM. L, Bois JD, Yu J.-Q. Chem. Soc. Rev. 2011; 40: 1855
  • 12 Murai S, Kakiuchi F, Sekine S, Tanaka Y, Kamatani A, Sonoda M, Chatani N. Nature 1993; 366: 529
  • 13 Ali SZ, Budaitis BG, Fontaine DF. A, Pace AL, Garwin JA, White MC. Science 2022; 376: 276
  • 14 Blythe IM, Xu J, Fernandez-Odell JS, Kampf J, Bowring MA, Sanford MS. J. Am. Chem. Soc. 2023; 145: 18253
    • 15a Stuart DR, Fagnou K. Science 2007; 316: 1172
    • 15b Lafrance M, Rowley CN, Woo TK, Fagnou K. J. Am. Chem. Soc. 2006; 128: 8754
  • 16 Lu MZ, Goh J, Maraswami M, Jia ZH, Tian JS, Loh T.-P. Chem. Rev. 2022; 122: 17479
    • 18a Pankajakshan S, Xu Y.-H, Cheng JK, Low MT, Loh T.-P. Angew. Chem. Int. Ed. 2012; 51: 5701
    • 18b Bartoccini F, Cannas D.-M, Fini F, Piersanti G. Org. Lett. 2016; 18: 2762
    • 19a Xu YH, Chok YK, Loh T.-P. Chem. Sci. 2011; 2: 1822
    • 19b Patureau FW, Besset T, Glorius F. Angew. Chem. Int. Ed. 2011; 50: 1064
    • 20a Stuart D.-R, Alsabeh P, Kuhn M, Fagnou K. J. Am. Chem. Soc. 2010; 132: 18326
    • 20b Feng C, Feng D.-M, Loh T.-P. Chem. Commun. 2014; 50: 9865
    • 21a Ding R, Huang ZD, Liu ZL, Wang TX, Xu YH, Loh T.-P. Chem. Commun. 2016; 52: 5617
    • 21b Xing D, Dong G. J. Am. Chem. Soc. 2017; 139: 13664
    • 22a Zhu TH, Zhang XC, Cui XL, Zhang ZY, Jiang H, Sun S.-S, Zhao LL, Zhao K, Loh T.-P. Adv. Synth. Catal. 2019; 361: 3593
    • 22b Zhu TH, Zhang XC, Zhao K, Loh T.-P. Org. Chem. Front. 2019; 6: 94
  • 23 Inoue M, Sumii Y, Shibata N. ACS Omega 2020; 5: 10633
  • 24 Zhu TH, Zhang ZY, Tao JY, Zhao K, Loh T.-P. Org. Lett. 2019; 21: 6155
  • 25 Zhao K, Zhang ZY, Cui XL, Wang YX, Wu XD, Li WM, Wu JX, Zhao LL, Guo JY, Loh T.-P. Org. Lett. 2020; 22: 9029
  • 26 Zhao K, Guo JY, Guan T, Wang YX, Tao JY, Zhang Y, Zhang QH, Ni K, Loh T.-P. Org. Chem. Front. 2021; 8: 4086
  • 27 Guo JY, Zhang ZY, Guan T, Mao LW, Ban Q, Zhao K, Loh T.-P. Chem. Sci. 2019; 10: 8792
  • 28 Huang HM, Bellotti P, Glorius F. Acc. Chem. Res. 2022; 55: 1135
  • 29 Zhao K, Zhang XC, Tao JY, Wu XD, Wu JX, Li WM, Zhu TH, Loh T.-P. Green Chem. 2020; 22: 5497
    • 30a Fernández-Pérez H, Etayo P, Panossian A, Vidal-Ferran A. Chem. Rev. 2011; 111: 2119
    • 30b George A, Veis A. Chem. Rev. 2008; 108: 4670
  • 31 Li J, Gao Z, Guo Y, Liu H, Zhao P, Bi X, Shi E, Xiao J. RSC Adv. 2022; 12: 18889
  • 32 Xie PZ, Fan J, Liu YN, Wo XY, Fu WS, Loh T.-P. Org. Lett. 2018; 20: 3341
  • 33 Zhang C, Xu SY, Zuo H, Zhang X, Dang QD, Niu DW. Nat. Synth. 2023; 2: 251
  • 34 Kariofillis SK, Jiang ST, Żurański AM, Gandhi SS, Martinez Alvarado JI, Doyle AG. J. Am. Chem. Soc. 2022; 144: 1045
  • 35 Seyferth D. Organometallics 2009; 28: 1598
  • 36 Fan JL, Wei QC, Zhu ES, Gao J, Cheng XM, Lu YN, Loh T.-P. Chem. Commun. 2021; 57: 5977
  • 37 Eicher T, Hauptmann S, Speicher A. The Chemistry of Heterocycles: Structures, Reactions, Synthesis, and Applications, 2nd ed. Wiley-VCH; Weinheim: 2003
  • 38 Shi H, Lu Y, Weng J, Bay KL, Chen XY, Tanaka K, Verma P, Houk KN, Yu JQ. Nat. Chem. 2020; 12: 399
  • 39 Liu DY, Liu X, Gao Y, Wang CQ, Tian JS, Loh T.-P. Org. Lett. 2020; 22: 8978
  • 40 Praveen PJ, Parameswaran PS, Majik MS. Synthesis 2015; 47: 1827
  • 41 Chavan KA, Shukla M, Chauhan AN. S, Maji S, Mali G, Bhattacharyya S, Rohan D, Erande RD. ACS Omega 2022; 7: 10438
  • 42 Ye L, Cai SH, Wang DX, Wang YQ, Lai LJ, Feng C, Loh T.-P. Org. Lett. 2017; 19: 6164
  • 43 Li BX, Kim DK, Bloom S, Huang RY.-C, Qiao JX, Ewing WR, Oblinsky DG, Scholes GD, MacMillan DW. C. Nat. Chem. 2021; 13: 902