Journal of Pediatric Neuroradiology 2015; 04(04): 132-144
DOI: 10.1055/s-0036-1584207
Review Article
Georg Thieme Verlag KG Stuttgart • New York

Advanced Magnetic Resonance Imaging in Optic Pathway Gliomas

Peter M. K. de Blank
1   Division of Pediatric Hematology and Oncology, Department of Pediatrics, Rainbow Babies & Children's Hospital, Case Western Reserve University, Cleveland, Ohio, United States
,
Shehanaz K. Ellika
2   Department of Radiology, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
,
Michael J. Fisher
3   Division of Oncology, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
4   Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
› Author Affiliations
Further Information

Publication History

13 April 2015

13 April 2015

Publication Date:
20 May 2016 (online)

Abstract

Optic pathway gliomas (OPGs) are low-grade neoplasm of the precortical visual pathway commonly associated with neurofibromatosis type 1. Although these tumors rarely threaten life, up to half of affected children will undergo visual acuity loss that cannot be corrected with refractive lenses. Given the variability in clinical course and the importance of visual function in the treatment of OPG, advanced magnetic resonance (MR) techniques that help identify early vision loss or predict future dysfunction would be important in the management of OPG. In this article, we review the clinical features and management of OPGs and discuss recent advances in MR imaging (MRI) applicable to OPGs, including MR spectroscopy, diffusion-weighted imaging, diffusion tensor imaging, MR perfusion imaging, and MR fingerprinting. If these techniques can be used to help inform clinical decision making, MRI may provide a fast and noninvasive method to help guide clinical practice.

 
  • References

  • 1 Listernick R, Ferner RE, Liu GT, Gutmann DH. Optic pathway gliomas in neurofibromatosis-1: controversies and recommendations. Ann Neurol 2007; 61 (3) 189-198
  • 2 Balcer LJ, Liu GT, Heller G , et al. Visual loss in children with neurofibromatosis type 1 and optic pathway gliomas: relation to tumor location by magnetic resonance imaging. Am J Ophthalmol 2001; 131 (4) 442-445
  • 3 Listernick R, Charrow J. Neurofibromatosis type 1 in childhood. J Pediatr 1990; 116 (6) 845-853
  • 4 Cappelli C, Grill J, Raquin M , et al. Long-term follow up of 69 patients treated for optic pathway tumours before the chemotherapy era. Arch Dis Child 1998; 79 (4) 334-338
  • 5 Dutton JJ. Gliomas of the anterior visual pathway. Surv Ophthalmol 1994; 38 (5) 427-452
  • 6 Stern J, DiGiacinto GV, Housepian EM. Neurofibromatosis and optic glioma: clinical and morphological correlations. Neurosurgery 1979; 4 (6) 524-528
  • 7 Listernick R, Charrow J, Greenwald M, Mets M. Natural history of optic pathway tumors in children with neurofibromatosis type 1: a longitudinal study. J Pediatr 1994; 125 (1) 63-66
  • 8 Listernick R, Louis DN, Packer RJ, Gutmann DH. Optic pathway gliomas in children with neurofibromatosis 1: consensus statement from the NF1 Optic Pathway Glioma Task Force. Ann Neurol 1997; 41 (2) 143-149
  • 9 King A, Listernick R, Charrow J, Piersall L, Gutmann DH. Optic pathway gliomas in neurofibromatosis type 1: the effect of presenting symptoms on outcome. Am J Med Genet A 2003; 122A (2) 95-99
  • 10 Chateil JF, Soussotte C, Pédespan JM, Brun M, Le Manh C, Diard F. MRI and clinical differences between optic pathway tumours in children with and without neurofibromatosis. Br J Radiol 2001; 74 (877) 24-31
  • 11 Ater J, Holmes E, Zhou T , et al. Abstracts from the thirteenth international symposium on pediatric neuro-oncology: results of COG protocol A9952- a randomized phase 3 study of two chemotherapy regimens for incompletely resected low-grade glioma in young children. Neuro-oncol 2008; 10: 451
  • 12 Ater JL, Zhou T, Holmes E , et al. Randomized study of two chemotherapy regimens for treatment of low-grade glioma in young children: a report from the Children's Oncology Group. J Clin Oncol 2012; 30 (21) 2641-2647
  • 13 Rodriguez FJ, Ligon AH, Horkayne-Szakaly I , et al. BRAF duplications and MAPK pathway activation are frequent in gliomas of the optic nerve proper. J Neuropathol Exp Neurol 2012; 71 (9) 789-794
  • 14 Listernick R, Charrow J, Greenwald MJ, Esterly NB. Optic gliomas in children with neurofibromatosis type 1. J Pediatr 1989; 114 (5) 788-792
  • 15 Listernick R, Ferner RE, Piersall L, Sharif S, Gutmann DH, Charrow J. Late-onset optic pathway tumors in children with neurofibromatosis 1. Neurology 2004; 63 (10) 1944-1946
  • 16 Abadin SS, Zoellner NL, Schaeffer M, Porcelli B, Gutmann DH, Johnson KJ. Racial/ethnic differences in pediatric brain tumor diagnoses in individuals with Neurofibromatosis Type 1. J Pediatr 2015; 167 (3) 613-20.e1 , 2
  • 17 Diggs-Andrews KA, Brown JA, Gianino SM, Rubin JB, Wozniak DF, Gutmann DH. Sex Is a major determinant of neuronal dysfunction in neurofibromatosis type 1. Ann Neurol 2014; 75 (2) 309-316
  • 18 Fisher MJ, Loguidice M, Gutmann DH , et al. Gender as a disease modifier in neurofibromatosis type 1 optic pathway glioma. Ann Neurol 2014; 75 (5) 799-800
  • 19 Hoffman HJ, Soloniuk DS, Humphreys RP , et al. Management and outcome of low-grade astrocytomas of the midline in children: a retrospective review. Neurosurgery 1993; 33 (6) 964-971
  • 20 Laithier V, Grill J, Le Deley MC , et al; French Society of Pediatric Oncology. Progression-free survival in children with optic pathway tumors: dependence on age and the quality of the response to chemotherapy—results of the first French prospective study for the French Society of Pediatric Oncology. J Clin Oncol 2003; 21 (24) 4572-4578
  • 21 Sutton LN, Molloy PT, Sernyak H , et al. Long-term outcome of hypothalamic/chiasmatic astrocytomas in children treated with conservative surgery. J Neurosurg 1995; 83 (4) 583-589
  • 22 Komotar RJ, Burger PC, Carson BS , et al. Pilocytic and pilomyxoid hypothalamic/chiasmatic astrocytomas. Neurosurgery 2004; 54 (1) 72-79 , discussion 79–80
  • 23 Komotar RJ, Mocco J, Jones JE , et al. Pilomyxoid astrocytoma: diagnosis, prognosis, and management. Neurosurg Focus 2005; 18 (6A): E7
  • 24 Tihan T, Fisher PG, Kepner JL , et al. Pediatric astrocytomas with monomorphous pilomyxoid features and a less favorable outcome. J Neuropathol Exp Neurol 1999; 58 (10) 1061-1068
  • 25 Bowers DC, Gargan L, Kapur P , et al. Study of the MIB-1 labeling index as a predictor of tumor progression in pilocytic astrocytomas in children and adolescents. J Clin Oncol 2003; 21 (15) 2968-2973
  • 26 Cummings TJ, Provenzale JM, Hunter SB , et al. Gliomas of the optic nerve: histological, immunohistochemical (MIB-1 and p53), and MRI analysis. Acta Neuropathol 2000; 99 (5) 563-570
  • 27 Rodriguez FJ, Perry A, Gutmann DH , et al. Gliomas in neurofibromatosis type 1: a clinicopathologic study of 100 patients. J Neuropathol Exp Neurol 2008; 67 (3) 240-249
  • 28 Dasgupta B, Li W, Perry A, Gutmann DH. Glioma formation in neurofibromatosis 1 reflects preferential activation of K-RAS in astrocytes. Cancer Res 2005; 65 (1) 236-245
  • 29 Sievert AJ, Jackson EM, Gai X , et al. Duplication of 7q34 in pediatric low-grade astrocytomas detected by high-density single-nucleotide polymorphism-based genotype arrays results in a novel BRAF fusion gene. Brain Pathol 2009; 19 (3) 449-458
  • 30 Dougherty MJ, Santi M, Brose MS , et al. Activating mutations in BRAF characterize a spectrum of pediatric low-grade gliomas. Neuro-oncol 2010; 12 (7) 621-630
  • 31 Pfister S, Janzarik WG, Remke M , et al. BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas. J Clin Invest 2008; 118 (5) 1739-1749
  • 32 Schiffman JD, Hodgson JG, VandenBerg SR , et al. Oncogenic BRAF mutation with CDKN2A inactivation is characteristic of a subset of pediatric malignant astrocytomas. Cancer Res 2010; 70 (2) 512-519
  • 33 Jones DT, Kocialkowski S, Liu L , et al. Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res 2008; 68 (21) 8673-8677
  • 34 Jones DT, Kocialkowski S, Liu L, Pearson DM, Ichimura K, Collins VP. Oncogenic RAF1 rearrangement and a novel BRAF mutation as alternatives to KIAA1549:BRAF fusion in activating the MAPK pathway in pilocytic astrocytoma. Oncogene 2009; 28 (20) 2119-2123
  • 35 Jones DT, Hutter B, Jäger N , et al; International Cancer Genome Consortium PedBrain Tumor Project. Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nat Genet 2013; 45 (8) 927-932
  • 36 Horbinski C, Hamilton RL, Nikiforov Y, Pollack IF. Association of molecular alterations, including BRAF, with biology and outcome in pilocytic astrocytomas. Acta Neuropathol 2010; 119 (5) 641-649
  • 37 Hawkins C, Walker E, Mohamed N , et al. BRAF-KIAA1549 fusion predicts better clinical outcome in pediatric low-grade astrocytoma. Clin Cancer Res 2011; 17 (14) 4790-4798
  • 38 Schindler G, Capper D, Meyer J , et al. Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol 2011; 121 (3) 397-405
  • 39 Lin A, Rodriguez FJ, Karajannis MA , et al. BRAF alterations in primary glial and glioneuronal neoplasms of the central nervous system with identification of 2 novel KIAA1549:BRAF fusion variants. J Neuropathol Exp Neurol 2012; 71 (1) 66-72
  • 40 Cin H, Meyer C, Herr R , et al. Oncogenic FAM131B-BRAF fusion resulting from 7q34 deletion comprises an alternative mechanism of MAPK pathway activation in pilocytic astrocytoma. Acta Neuropathol 2011; 121 (6) 763-774
  • 41 Colin C, Padovani L, Chappé C , et al. Outcome analysis of childhood pilocytic astrocytomas: a retrospective study of 148 cases at a single institution. Neuropathol Appl Neurobiol 2013; 39 (6) 693-705
  • 42 Horbinski C, Nikiforova MN, Hagenkord JM, Hamilton RL, Pollack IF. Interplay among BRAF, p16, p53, and MIB1 in pediatric low-grade gliomas. Neuro-oncol 2012; 14 (6) 777-789
  • 43 Kaul A, Toonen JA, Gianino SM, Gutmann DH. The impact of coexisting genetic mutations on murine optic glioma biology. Neuro-oncol 2015; 17 (5) 670-677
  • 44 Ferner RE. Neurofibromatosis 1 and neurofibromatosis 2: a twenty first century perspective. Lancet Neurol 2007; 6 (4) 340-351
  • 45 Hersh JH ; American Academy of Pediatrics Committee on Genetics. Health supervision for children with neurofibromatosis. Pediatrics 2008; 121 (3) 633-642
  • 46 Jahraus CD, Tarbell NJ. Optic pathway gliomas. Pediatr Blood Cancer 2006; 46 (5) 586-596
  • 47 Allen JC. Initial management of children with hypothalamic and thalamic tumors and the modifying role of neurofibromatosis-1. Pediatr Neurosurg 2000; 32 (3) 154-162
  • 48 Liu GT. Optic gliomas of the anterior visual pathway. Curr Opin Ophthalmol 2006; 17 (5) 427-431
  • 49 Pepin SM, Lessell S. Anterior visual pathway gliomas: the last 30 years. Semin Ophthalmol 2006; 21 (3) 117-124
  • 50 Avery RA, Fisher MJ, Liu GT. Optic pathway gliomas. J Neuroophthalmol 2011; 31 (3) 269-278
  • 51 Shen TT, Sakai O, Curtin HD, Rizzo III JF. Magnetic resonance imaging of primary anterior visual pathway tumors. Int Ophthalmol Clin 2001; 41 (1) 171-180
  • 52 Campagna M, Opocher E, Viscardi E , et al. Optic pathway glioma: long-term visual outcome in children without neurofibromatosis type-1. Pediatr Blood Cancer 2010; 55 (6) 1083-1088
  • 53 Shofty B, Ben-Sira L, Freedman S , et al. Visual outcome following chemotherapy for progressive optic pathway gliomas. Pediatr Blood Cancer 2011; 57 (3) 481-485
  • 54 Fisher MJ, Loguidice M, Gutmann DH , et al. Visual outcomes in children with neurofibromatosis type 1-associated optic pathway glioma following chemotherapy: a multicenter retrospective analysis. Neuro-oncol 2012; 14 (6) 790-797
  • 55 Fisher MJ, Avery RA, Allen JC , et al; REiNS International Collaboration. Functional outcome measures for NF1-associated optic pathway glioma clinical trials. Neurology 2013; 81 (21) (Suppl. 01) S15-S24
  • 56 Thiagalingam S, Flaherty M, Billson F, North K. Neurofibromatosis type 1 and optic pathway gliomas: follow-up of 54 patients. Ophthalmology 2004; 111 (3) 568-577
  • 57 Czyzyk E, Jóźwiak S, Roszkowski M, Schwartz RA. Optic pathway gliomas in children with and without neurofibromatosis 1. J Child Neurol 2003; 18 (7) 471-478
  • 58 Opocher E, Kremer LC, Da Dalt L , et al. Prognostic factors for progression of childhood optic pathway glioma: a systematic review. Eur J Cancer 2006; 42 (12) 1807-1816
  • 59 Deliganis AV, Geyer JR, Berger MS. Prognostic significance of type 1 neurofibromatosis (von Recklinghausen Disease) in childhood optic glioma. Neurosurgery 1996; 38 (6) 1114-1118 , discussion 1118–1119
  • 60 Tow SL, Chandela S, Miller NR, Avellino AM. Long-term outcome in children with gliomas of the anterior visual pathway. Pediatr Neurol 2003; 28 (4) 262-270
  • 61 Packer RJ, Ater J, Allen J , et al. Carboplatin and vincristine chemotherapy for children with newly diagnosed progressive low-grade gliomas. J Neurosurg 1997; 86 (5) 747-754
  • 62 Fouladi M, Hunt DL, Pollack IF , et al. Outcome of children with centrally reviewed low-grade gliomas treated with chemotherapy with or without radiotherapy on Children's Cancer Group high-grade glioma study CCG-945. Cancer 2003; 98 (6) 1243-1252
  • 63 Warrington NM, Sun T, Luo J , et al. The cyclic AMP pathway is a sex-specific modifier of glioma risk in type I neurofibromatosis patients. Cancer Res 2015; 75 (1) 16-21
  • 64 Bolcekova A, Nemethova M, Zatkova A , et al. Clustering of mutations in the 5′ tertile of the NF1 gene in Slovakia patients with optic pathway glioma. Neoplasma 2013; 60 (6) 655-665
  • 65 Sharif S, Upadhyaya M, Ferner R , et al. A molecular analysis of individuals with neurofibromatosis type 1 (NF1) and optic pathway gliomas (OPGs), and an assessment of genotype-phenotype correlations. J Med Genet 2011; 48 (4) 256-260
  • 66 Leonard JR, Perry A, Rubin JB, King AA, Chicoine MR, Gutmann DH. The role of surgical biopsy in the diagnosis of glioma in individuals with neurofibromatosis-1. Neurology 2006; 67 (8) 1509-1512
  • 67 Sievert AJ, Fisher MJ. Pediatric low-grade gliomas. J Child Neurol 2009; 24 (11) 1397-1408
  • 68 Horwich A, Bloom HJG. Optic gliomas: radiation therapy and prognosis. Int J Radiat Oncol Biol Phys 1985; 11 (6) 1067-1079
  • 69 Grabenbauer GG, Schuchardt U, Buchfelder M , et al. Radiation therapy of optico-hypothalamic gliomas (OHG)—radiographic response, vision and late toxicity. Radiother Oncol 2000; 54 (3) 239-245
  • 70 Jenkin D, Angyalfi S, Becker L , et al. Optic glioma in children: surveillance, resection, or irradiation?. Int J Radiat Oncol Biol Phys 1993; 25 (2) 215-225
  • 71 Sharif S, Ferner R, Birch JM , et al. Second primary tumors in neurofibromatosis 1 patients treated for optic glioma: substantial risks after radiotherapy. J Clin Oncol 2006; 24 (16) 2570-2575
  • 72 Grill J, Couanet D, Cappelli C , et al. Radiation-induced cerebral vasculopathy in children with neurofibromatosis and optic pathway glioma. Ann Neurol 1999; 45 (3) 393-396
  • 73 Kestle JR, Hoffman HJ, Mock AR. Moyamoya phenomenon after radiation for optic glioma. J Neurosurg 1993; 79 (1) 32-35
  • 74 Ullrich NJ, Robertson R, Kinnamon DD , et al. Moyamoya following cranial irradiation for primary brain tumors in children. Neurology 2007; 68 (12) 932-938
  • 75 Pierce SM, Barnes PD, Loeffler JS, McGinn C, Tarbell NJ. Definitive radiation therapy in the management of symptomatic patients with optic glioma. Survival and long-term effects. Cancer 1990; 65 (1) 45-52
  • 76 Lacaze E, Kieffer V, Streri A , et al. Neuropsychological outcome in children with optic pathway tumours when first-line treatment is chemotherapy. Br J Cancer 2003; 89 (11) 2038-2044
  • 77 Massimino M, Spreafico F, Cefalo G , et al. High response rate to cisplatin/etoposide regimen in childhood low-grade glioma. J Clin Oncol 2002; 20 (20) 4209-4216
  • 78 Packer RJ, Jakacki R, Horn M , et al. Objective response of multiply recurrent low-grade gliomas to bevacizumab and irinotecan. Pediatr Blood Cancer 2009; 52 (7) 791-795
  • 79 Bouffet E, Jakacki R, Goldman S , et al. Phase II study of weekly vinblastine in recurrent or refractory pediatric low-grade glioma. J Clin Oncol 2012; 30 (12) 1358-1363
  • 80 Gururangan S, Fisher MJ, Allen JC , et al. Temozolomide in children with progressive low-grade glioma. Neuro-oncol 2007; 9 (2) 161-168
  • 81 Avery RA, Hardy KK. Vision specific quality of life in children with optic pathway gliomas. J Neurooncol 2014; 116 (2) 341-347
  • 82 de Blank PM, Fisher MJ, Lu L , et al. Impact of vision loss among survivors of childhood central nervous system astroglial tumors. Cancer 2016; 122 (5) 730-739
  • 83 Harris LM, Davies NP, Macpherson L , et al. Magnetic resonance spectroscopy in the assessment of pilocytic astrocytomas. Eur J Cancer 2008; 44 (17) 2640-2647
  • 84 Peet AC, Lateef S, MacPherson L, Natarajan K, Sgouros S, Grundy RG. Short echo time 1 H magnetic resonance spectroscopy of childhood brain tumours. Childs Nerv Syst 2007; 23 (2) 163-169
  • 85 Orphanidou-Vlachou E, Auer D, Brundler MA , et al. (1)H magnetic resonance spectroscopy in the diagnosis of paediatric low grade brain tumours. Eur J Radiol 2013; 82 (6) e295-e301
  • 86 Novak J, Wilson M, Macpherson L, Arvanitis TN, Davies NP, Peet AC. Clinical protocols for ��P MRS of the brain and their use in evaluating optic pathway gliomas in children. Eur J Radiol 2014; 83 (2) e106-e112
  • 87 Albers MJ, Krieger MD, Gonzalez-Gomez I , et al. Proton-decoupled 31P MRS in untreated pediatric brain tumors. Magn Reson Med 2005; 53 (1) 22-29
  • 88 Wilson M, Davies NP, Brundler MA, McConville C, Grundy RG, Peet AC. High resolution magic angle spinning 1H NMR of childhood brain and nervous system tumours. Mol Cancer 2009; 8: 6
  • 89 Sheikh SF, Kubal WS, Anderson AW, Mutalik P. Longitudinal evaluation of apparent diffusion coefficient in children with neurofibromatosis type 1. J Comput Assist Tomogr 2003; 27 (5) 681-686
  • 90 Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 1986; 161 (2) 401-407
  • 91 Tien RD, Felsberg GJ, Friedman H, Brown M, MacFall J. MR imaging of high-grade cerebral gliomas: value of diffusion-weighted echoplanar pulse sequences. AJR Am J Roentgenol 1994; 162 (3) 671-677
  • 92 Yeom KW, Lober RM, Andre JB , et al. Prognostic role for diffusion-weighted imaging of pediatric optic pathway glioma. J Neurooncol 2013; 113 (3) 479-483
  • 93 Jost SC, Ackerman JW, Garbow JR, Manwaring LP, Gutmann DH, McKinstry RC. Diffusion-weighted and dynamic contrast-enhanced imaging as markers of clinical behavior in children with optic pathway glioma. Pediatr Radiol 2008; 38 (12) 1293-1299
  • 94 Yamasaki F, Kurisu K, Satoh K , et al. Apparent diffusion coefficient of human brain tumors at MR imaging. Radiology 2005; 235 (3) 985-991
  • 95 Rumboldt Z, Camacho DL, Lake D, Welsh CT, Castillo M. Apparent diffusion coefficients for differentiation of cerebellar tumors in children. AJNR Am J Neuroradiol 2006; 27 (6) 1362-1369
  • 96 Gauvain KM, McKinstry RC, Mukherjee P , et al. Evaluating pediatric brain tumor cellularity with diffusion-tensor imaging. AJR Am J Roentgenol 2001; 177 (2) 449-454
  • 97 Sener RN. Diffusion MRI in neurofibromatosis type 1: ADC evaluations of the optic pathways, and a comparison with normal individuals. Comput Med Imaging Graph 2002; 26 (2) 59-64
  • 98 Le Bihan D, Mangin JF, Poupon C , et al. Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 2001; 13 (4) 534-546
  • 99 Tummala RP, Chu RM, Liu H, Truwit CL, Hall WA. Application of diffusion tensor imaging to magnetic-resonance-guided brain tumor resection. Pediatr Neurosurg 2003; 39 (1) 39-43
  • 100 Lober RM, Guzman R, Cheshier SH, Fredrick DR, Edwards MS, Yeom KW. Application of diffusion tensor tractography in pediatric optic pathway glioma. J Neurosurg Pediatr 2012; 10 (4) 273-280
  • 101 Hickman SJ. Optic nerve imaging in multiple sclerosis. J Neuroimaging 2007; 17 (Suppl. 01) 42S-45S
  • 102 Kolbe S, Chapman C, Nguyen T , et al. Optic nerve diffusion changes and atrophy jointly predict visual dysfunction after optic neuritis. Neuroimage 2009; 45 (3) 679-686
  • 103 Vinogradov E, Degenhardt A, Smith D , et al. High-resolution anatomic, diffusion tensor, and magnetization transfer magnetic resonance imaging of the optic chiasm at 3T. J Magn Reson Imaging 2005; 22 (2) 302-306
  • 104 Filippi CG, Bos A, Nickerson JP, Salmela MB, Koski CJ, Cauley KA. Magnetic resonance diffusion tensor imaging (MRDTI) of the optic nerve and optic radiations at 3T in children with neurofibromatosis type I (NF-1). Pediatr Radiol 2012; 42 (2) 168-174
  • 105 de Blank PM, Berman JI, Liu GT, Roberts TP, Fisher MJ. Fractional anisotropy of the optic radiations is associated with visual acuity loss in optic pathway gliomas of neurofibromatosis type 1. Neuro-oncol 2013; 15 (8) 1088-1095
  • 106 Pauliah M, Saxena V, Haris M, Husain N, Rathore RK, Gupta RK. Improved T(1)-weighted dynamic contrast-enhanced MRI to probe microvascularity and heterogeneity of human glioma. Magn Reson Imaging 2007; 25 (9) 1292-1299
  • 107 Law M, Oh S, Babb JS , et al. Low-grade gliomas: dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging—prediction of patient clinical response. Radiology 2006; 238 (2) 658-667
  • 108 Ma D, Gulani V, Seiberlich N , et al. Magnetic resonance fingerprinting. Nature 2013; 495 (7440) 187-192
  • 109 Englund E, Brun A, Larsson EM, Györffy-Wagner Z, Persson B. Tumours of the central nervous system. Proton magnetic resonance relaxation times T1 and T2 and histopathologic correlates. Acta Radiol Diagn (Stockh) 1986; 27 (6) 653-659
  • 110 Chen XZ, Yin XM, Ai L, Chen Q, Li SW, Dai JP. Differentiation between brain glioblastoma multiforme and solitary metastasis: qualitative and quantitative analysis based on routine MR imaging. AJNR Am J Neuroradiol 2012; 33 (10) 1907-1912
  • 111 Oh J, Cha S, Aiken AH , et al. Quantitative apparent diffusion coefficients and T2 relaxation times in characterizing contrast enhancing brain tumors and regions of peritumoral edema. J Magn Reson Imaging 2005; 21 (6) 701-708
  • 112 Badve C, Ma D, Jiang Y , et al. Abstract 3234: Tissue Characterization of Gliomas: Initial Clinical Experience with Magnetic Resonance Fingerprinting (MRF). Milan, Italy: International Society for Magnetic Resonance in Medicine; 2014