Clin Colon Rectal Surg 2016; 29(03): 196-204
DOI: 10.1055/s-0036-1584289
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Advances in Biomarkers: Going Beyond the Carcinoembryonic Antigen

Nicole E. Lopez
1   Division of Surgical Oncology, University of North Carolina, Chapel Hill, North Carolina
,
Carrie Y. Peterson
2   Division of Colorectal Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
› Author Affiliations
Further Information

Publication History

Publication Date:
17 August 2016 (online)

Abstract

Using biologically available markers to guide treatment decisions in colorectal cancer care is becoming increasingly common, though our understanding of these biomarkers is in its infancy. In this article, we will discuss how this area is rapidly changing, review important biomarkers being used currently, and explain how the results influence clinical decision-making. We will also briefly discuss the possibility of a liquid biopsy and explore several exciting and new options.

 
  • References

  • 1 Duffy MJ, van Dalen A, Haglund C , et al. Clinical utility of biochemical markers in colorectal cancer: European Group on Tumour Markers (EGTM) guidelines. Eur J Cancer 2003; 39 (6) 718-727
  • 2 Goldstein MJ, Mitchell EP. Carcinoembryonic antigen in the staging and follow-up of patients with colorectal cancer. Cancer Invest 2005; 23 (4) 338-351
  • 3 Fletcher RH. Carcinoembryonic antigen. Ann Intern Med 1986; 104 (1) 66-73
  • 4 Locker GY, Hamilton S, Harris J , et al; ASCO. ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer. J Clin Oncol 2006; 24 (33) 5313-5327
  • 5 Burt RW, Cannon JA, David DS , et al; National comprehensive cancer network. Colorectal cancer screening. J Natl Compr Canc Netw 2013; 11 (12) 1538-1575
  • 6 Mayer RJ, Garnick MB, Steele Jr GD, Zamcheck N. Carcinoembryonic antigen (CEA) as a monitor of chemotherapy in disseminated colorectal cancer. Cancer 1978; 42 (3, Suppl): 1428-1433
  • 7 Rosen M, Chan L, Beart Jr RW, Vukasin P, Anthone G. Follow-up of colorectal cancer: a meta-analysis. Dis Colon Rectum 1998; 41 (9) 1116-1126
  • 8 Mäkelä JT, Laitinen SO, Kairaluoma MI. Five-year follow-up after radical surgery for colorectal cancer. Results of a prospective randomized trial. Arch Surg 1995; 130 (10) 1062-1067
  • 9 Benson III AB, Bekaii-Saab T, Chan E , et al; National Comprehensive Cancer Network. Localized colon cancer, version 3.2013: featured updates to the NCCN Guidelines. J Natl Compr Canc Netw 2013; 11 (5) 519-528
  • 10 Hohenberger P, Schlag PM, Gerneth T, Herfarth C. Pre- and postoperative carcinoembryonic antigen determinations in hepatic resection for colorectal metastases. Predictive value and implications for adjuvant treatment based on multivariate analysis. Ann Surg 1994; 219 (2) 135-143
  • 11 Ward U, Primrose JN, Finan PJ , et al. The use of tumour markers CEA, CA-195 and CA-242 in evaluating the response to chemotherapy in patients with advanced colorectal cancer. Br J Cancer 1993; 67 (5) 1132-1135
  • 12 Johnson CM, Wei C, Ensor JE , et al. Meta-analyses of colorectal cancer risk factors. Cancer Causes Control 2013; 24 (6) 1207-1222
  • 13 Network NCC. NCCN Clinical Practice Guidelines in Oncology: Genetic/Familial High-Risk Assessment: Colorectal Version I. 2015. Available at: https://www.nccn.org/professionals/physician_gls/pdf/colorectal_screening.pdf . Access on May 23, 2016
  • 14 Syngal S, Brand RE, Church JM, Giardiello FM, Hampel HL, Burt RW ; American College of Gastroenterology. ACG clinical guideline: Genetic testing and management of hereditary gastrointestinal cancer syndromes. Am J Gastroenterol 2015; 110 (2) 223-262 , quiz 263
  • 15 Lagarde A, Rouleau E, Ferrari A , et al. Germline APC mutation spectrum derived from 863 genomic variations identified through a 15-year medical genetics service to French patients with FAP. J Med Genet 2010; 47 (10) 721-722
  • 16 Aretz S, Vasen HF, Olschwang S. Clinical Utility Gene Card for: Familial adenomatous polyposis (FAP) and attenuated FAP (AFAP)—update 2014. Eur J Hum Genet 2015; 23 (6)
  • 17 Aretz S, Uhlhaas S, Caspari R , et al. Frequency and parental origin of de novo APC mutations in familial adenomatous polyposis. Eur J Hum Genet 2004; 12 (1) 52-58
  • 18 Rustin RB, Jagelman DG, McGannon E, Fazio VW, Lavery IC, Weakley FL. Spontaneous mutation in familial adenomatous polyposis. Dis Colon Rectum 1990; 33 (1) 52-55
  • 19 Barnetson RA, Tenesa A, Farrington SM , et al. Identification and survival of carriers of mutations in DNA mismatch-repair genes in colon cancer. N Engl J Med 2006; 354 (26) 2751-2763
  • 20 Hampel H, Frankel WL, Martin E , et al. Screening for the Lynch syndrome (hereditary nonpolyposis colorectal cancer). N Engl J Med 2005; 352 (18) 1851-1860
  • 21 Win AK, Jenkins MA, Buchanan DD , et al. Determining the frequency of de novo germline mutations in DNA mismatch repair genes. J Med Genet 2011; 48 (8) 530-534
  • 22 Green RC, Parfrey PS, Woods MO, Younghusband HB. Prediction of Lynch syndrome in consecutive patients with colorectal cancer. J Natl Cancer Inst 2009; 101 (5) 331-340
  • 23 Evaluation of Genomic Applications in Practice and Prevention (EGAPP) Working Group. Recommendations from the EGAPP Working Group: genetic testing strategies in newly diagnosed individuals with colorectal cancer aimed at reducing morbidity and mortality from Lynch syndrome in relatives. Genet Med 2009; 11 (1) 35-41
  • 24 Giardiello FM, Allen JI, Axilbund JE , et al. Guidelines on genetic evaluation and management of Lynch syndrome: a consensus statement by the US Multi-society Task Force on colorectal cancer. Am J Gastroenterol 2014; 109 (8) 1159-1179
  • 25 Network NCC. NCCN Clinical Practice Guidelines in Oncology: Colon Cancer Version 3. 2015. Available at: https://www.nccn.org/professionals/physician_gls/pdf/colon.pdf . Access on May 23, 2016
  • 26 Bartley AN, Luthra R, Saraiya DS, Urbauer DL, Broaddus RR. Identification of cancer patients with Lynch syndrome: clinically significant discordances and problems in tissue-based mismatch repair testing. Cancer Prev Res (Phila) 2012; 5 (2) 320-327
  • 27 Ladabaum U, Wang G, Terdiman J , et al. Strategies to identify the Lynch syndrome among patients with colorectal cancer: a cost-effectiveness analysis. Ann Intern Med 2011; 155 (2) 69-79
  • 28 Bacher JW, Flanagan LA, Smalley RL , et al. Development of a fluorescent multiplex assay for detection of MSI-High tumors. Dis Markers 2004; 20 (4–5) 237-250
  • 29 Boland CR, Thibodeau SN, Hamilton SR , et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res 1998; 58 (22) 5248-5257
  • 30 Boland CR, Goel A. Microsatellite instability in colorectal cancer. Gastroenterology 2010; 138 (6) 2073-2087.e3
  • 31 Affolter K, Samowitz W, Tripp S, Bronner MP. BRAF V600E mutation detection by immunohistochemistry in colorectal carcinoma. Genes Chromosomes Cancer 2013; 52 (8) 748-752
  • 32 Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Issa JP. CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci U S A 1999; 96 (15) 8681-8686
  • 33 Weisenberger DJ, Siegmund KD, Campan M , et al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet 2006; 38 (7) 787-793
  • 34 Hegde M, Ferber M, Mao R, Samowitz W, Ganguly A ; Working Group of the American College of Medical Genetics and Genomics (ACMG) Laboratory Quality Assurance Committee. ACMG technical standards and guidelines for genetic testing for inherited colorectal cancer (Lynch syndrome, familial adenomatous polyposis, and MYH-associated polyposis). Genet Med 2014; 16 (1) 101-116
  • 35 Maughan TS, Adams RA, Smith CG , et al; MRC COIN Trial Investigators. Addition of cetuximab to oxaliplatin-based first-line combination chemotherapy for treatment of advanced colorectal cancer: results of the randomised phase 3 MRC COIN trial. Lancet 2011; 377 (9783) 2103-2114
  • 36 Tveit KM, Guren T, Glimelius B , et al. Phase III trial of cetuximab with continuous or intermittent fluorouracil, leucovorin, and oxaliplatin (Nordic FLOX) versus FLOX alone in first-line treatment of metastatic colorectal cancer: the NORDIC-VII study. J Clin Oncol 2012; 30 (15) 1755-1762
  • 37 Tol J, Koopman M, Cats A , et al. Chemotherapy, bevacizumab, and cetuximab in metastatic colorectal cancer. N Engl J Med 2009; 360 (6) 563-572
  • 38 Van Cutsem E, Köhne CH, Hitre E , et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med 2009; 360 (14) 1408-1417
  • 39 Karapetis CS, Khambata-Ford S, Jonker DJ , et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med 2008; 359 (17) 1757-1765
  • 40 Bokemeyer C, Bondarenko I, Makhson A , et al. Fluorouracil, leucovorin, and oxaliplatin with and without cetuximab in the first-line treatment of metastatic colorectal cancer. J Clin Oncol 2009; 27 (5) 663-671
  • 41 Jonker DJ, O'Callaghan CJ, Karapetis CS , et al. Cetuximab for the treatment of colorectal cancer. N Engl J Med 2007; 357 (20) 2040-2048
  • 42 Poulin-Costello M, Azoulay L, Van Cutsem E, Peeters M, Siena S, Wolf M. An analysis of the treatment effect of panitumumab on overall survival from a phase 3, randomized, controlled, multicenter trial (20020408) in patients with chemotherapy refractory metastatic colorectal cancer. Target Oncol 2013; 8 (2) 127-136
  • 43 Atreya CE, Corcoran RB, Kopetz S. Expanded RAS: refining the patient population. J Clin Oncol 2015; 33 (7) 682-685
  • 44 Douillard JY, Oliner KS, Siena S , et al. Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N Engl J Med 2013; 369 (11) 1023-1034
  • 45 Sorich MJ, Wiese MD, Rowland A, Kichenadasse G, McKinnon RA, Karapetis CS. Extended RAS mutations and anti-EGFR monoclonal antibody survival benefit in metastatic colorectal cancer: a meta-analysis of randomized, controlled trials. Ann Oncol 2015; 26 (1) 13-21
  • 46 Evaluation of Genomic Applications in Practice and Prevention (EGAPP) Working Group. Recommendations from the EGAPP Working Group: can testing of tumor tissue for mutations in EGFR pathway downstream effector genes in patients with metastatic colorectal cancer improve health outcomes by guiding decisions regarding anti-EGFR therapy?. Genet Med 2013; 15 (7) 517-527
  • 47 De Roock W, Claes B, Bernasconi D , et al. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol 2010; 11 (8) 753-762
  • 48 Di Nicolantonio F, Martini M, Molinari F , et al. Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J Clin Oncol 2008; 26 (35) 5705-5712
  • 49 Bokemeyer C, Van Cutsem E, Rougier P , et al. Addition of cetuximab to chemotherapy as first-line treatment for KRAS wild-type metastatic colorectal cancer: pooled analysis of the CRYSTAL and OPUS randomised clinical trials. Eur J Cancer 2012; 48 (10) 1466-1475
  • 50 Tol J, Nagtegaal ID, Punt CJ. BRAF mutation in metastatic colorectal cancer. N Engl J Med 2009; 361 (1) 98-99
  • 51 Bokemeyer C, Bondarenko I, Hartmann JT , et al. Efficacy according to biomarker status of cetuximab plus FOLFOX-4 as first-line treatment for metastatic colorectal cancer: the OPUS study. Ann Oncol 2011; 22 (7) 1535-1546
  • 52 Ribic CM, Sargent DJ, Moore MJ , et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N Engl J Med 2003; 349 (3) 247-257
  • 53 Sargent DJ, Marsoni S, Monges G , et al. Defective mismatch repair as a predictive marker for lack of efficacy of fluorouracil-based adjuvant therapy in colon cancer. J Clin Oncol 2010; 28 (20) 3219-3226
  • 54 Gryfe R, Kim H, Hsieh ET , et al. Tumor microsatellite instability and clinical outcome in young patients with colorectal cancer. N Engl J Med 2000; 342 (2) 69-77
  • 55 Merok MA, Ahlquist T, Røyrvik EC , et al. Microsatellite instability has a positive prognostic impact on stage II colorectal cancer after complete resection: results from a large, consecutive Norwegian series. Ann Oncol 2013; 24 (5) 1274-1282
  • 56 Popat S, Hubner R, Houlston RS. Systematic review of microsatellite instability and colorectal cancer prognosis. J Clin Oncol 2005; 23 (3) 609-618
  • 57 Hutchins G, Southward K, Handley K , et al. Value of mismatch repair, KRAS, and BRAF mutations in predicting recurrence and benefits from chemotherapy in colorectal cancer. J Clin Oncol 2011; 29 (10) 1261-1270
  • 58 Tejpar FBS, Delorenzi M, Fiocca R , et al. Microsatellite instability (MSI) in stage II and III colon cancer treated with 5FU-LV or 5FU-LV and irinotecan (PETACC 3-EORTC 40993-SAKK 60/00 trial). J Clin Oncol 2009; 27 (15S): 4001
  • 59 André T, Boni C, Navarro M , et al. Improved overall survival with oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment in stage II or III colon cancer in the MOSAIC trial. J Clin Oncol 2009; 27 (19) 3109-3116
  • 60 Watanabe T, Wu TT, Catalano PJ , et al. Molecular predictors of survival after adjuvant chemotherapy for colon cancer. N Engl J Med 2001; 344 (16) 1196-1206
  • 61 Ogino S, Nosho K, Irahara N , et al. Prognostic significance and molecular associations of 18q loss of heterozygosity: a cohort study of microsatellite stable colorectal cancers. J Clin Oncol 2009; 27 (27) 4591-4598
  • 62 Swanton C, Tomlinson I, Downward J. Chromosomal instability, colorectal cancer and taxane resistance. Cell Cycle 2006; 5 (8) 818-823
  • 63 Lee AJ, Endesfelder D, Rowan AJ , et al. Chromosomal instability confers intrinsic multidrug resistance. Cancer Res 2011; 71 (5) 1858-1870
  • 64 Kuraoka I, Kobertz WR, Ariza RR, Biggerstaff M, Essigmann JM, Wood RD. Repair of an interstrand DNA cross-link initiated by ERCC1-XPF repair/recombination nuclease. J Biol Chem 2000; 275 (34) 26632-26636
  • 65 Yu J, Miller R, Zhang W , et al. Copy-number analysis of topoisomerase and thymidylate synthase genes in frozen and FFPE DNAs of colorectal cancers. Pharmacogenomics 2008; 9 (10) 1459-1466
  • 66 Koopman NKM, Richman S, Seymour M , et al. The correlation between Topoisomerase-I (Topo1) expression and outcome of treatment with capecitabine and irinotecan in advanced colorectal cancer (ACC) patients (pts) treated in the CAIRO study of the Dutch Colorectal Cancer Group (DCCG). Eur J Cancer Suppl 2009; 7 (2) 321-322
  • 67 Facista A, Nguyen H, Lewis C , et al. Deficient expression of DNA repair enzymes in early progression to sporadic colon cancer. Genome Integr 2012; 3 (1) 3
  • 68 Koopman M, Venderbosch S, van Tinteren H , et al. Predictive and prognostic markers for the outcome of chemotherapy in advanced colorectal cancer, a retrospective analysis of the phase III randomised CAIRO study. Eur J Cancer 2009; 45 (11) 1999-2006
  • 69 Lu Z, Zhang R, Diasio RB. Dihydropyrimidine dehydrogenase activity in human peripheral blood mononuclear cells and liver: population characteristics, newly identified deficient patients, and clinical implication in 5-fluorouracil chemotherapy. Cancer Res 1993; 53 (22) 5433-5438
  • 70 Evaluation of Genomic Applications in Practice and Prevention (EGAPP) Working Group. Recommendations from the EGAPP Working Group: can UGT1A1 genotyping reduce morbidity and mortality in patients with metastatic colorectal cancer treated with irinotecan?. Genet Med 2009; 11 (1) 15-20
  • 71 Etienne MC, Lagrange JL, Dassonville O , et al. Population study of dihydropyrimidine dehydrogenase in cancer patients. J Clin Oncol 1994; 12 (11) 2248-2253
  • 72 Omura K. Clinical implications of dihydropyrimidine dehydrogenase (DPD) activity in 5-FU-based chemotherapy: mutations in the DPD gene, and DPD inhibitory fluoropyrimidines. Int J Clin Oncol 2003; 8 (3) 132-138
  • 73 Walther A, Johnstone E, Swanton C, Midgley R, Tomlinson I, Kerr D. Genetic prognostic and predictive markers in colorectal cancer. Nat Rev Cancer 2009; 9 (7) 489-499
  • 74 Schmoll HJ, Van Cutsem E, Stein A , et al. ESMO Consensus Guidelines for management of patients with colon and rectal cancer. a personalized approach to clinical decision making. Ann Oncol 2012; 23 (10) 2479-2516
  • 75 Sood A, McClain D, Maitra R , et al. PTEN gene expression and mutations in the PIK3CA gene as predictors of clinical benefit to anti-epidermal growth factor receptor antibody therapy in patients with KRAS wild-type metastatic colorectal cancer. Clin Colorectal Cancer 2012; 11 (2) 143-150
  • 76 Gray RG, Quirke P, Handley K , et al. Validation study of a quantitative multigene reverse transcriptase-polymerase chain reaction assay for assessment of recurrence risk in patients with stage II colon cancer. J Clin Oncol 2011; 29 (35) 4611-4619
  • 77 O'Connell MJ, Lavery I, Yothers G , et al. Relationship between tumor gene expression and recurrence in four independent studies of patients with stage II/III colon cancer treated with surgery alone or surgery plus adjuvant fluorouracil plus leucovorin. J Clin Oncol 2010; 28 (25) 3937-3944
  • 78 Yothers G, O'Connell MJ, Lee M , et al. Validation of the 12-gene colon cancer recurrence score in NSABP C-07 as a predictor of recurrence in patients with stage II and III colon cancer treated with fluorouracil and leucovorin (FU/LV) and FU/LV plus oxaliplatin. J Clin Oncol 2013; 31 (36) 4512-4519
  • 79 Kopetz S, Tabernero J, Rosenberg R , et al. Genomic classifier ColoPrint predicts recurrence in stage II colorectal cancer patients more accurately than clinical factors. Oncologist 2015; 20 (2) 127-133
  • 80 Niedzwiecki DFW, Venook AP, Ye X , et al. Association between ColDx assay result and recurrence-free interval in stage II colon cancer patients on CALGB (Alliance) 9581. J Clin Oncol 2014; 32 (Suppl. 03) abstract number 455
  • 81 Bacolod MD, Barany F. Molecular profiling of colon tumors: the search for clinically relevant biomarkers of progression, prognosis, therapeutics, and predisposition. Ann Surg Oncol 2011; 18 (13) 3694-3700
  • 82 Cancer Genome Atlas N ; Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012; 487 (7407) 330-337
  • 83 Zalata KR, Elshal MF, Foda AA, Shoma A. Genetic dissimilarity between primary colorectal carcinomas and their lymph node metastases: ploidy, p53, bcl-2, and c-myc expression—a pilot study. Tumour Biol 2015; 36 (8) 6579-6584
  • 84 Siravegna G, Mussolin B, Buscarino M , et al. Clonal evolution and resistance to EGFR blockade in the blood of colorectal cancer patients. Nat Med 2015; 21 (7) 795-801
  • 85 Giessen-Jung C, Nagel D, Glas M , et al. Preoperative serum markers for individual patient prognosis in stage I-III colon cancer. Tumour Biol 2015; 36 (10) 7897-7906
  • 86 Stintzing S, Stremitzer S, Sebio A, Lenz HJ. Predictive and prognostic markers in the treatment of metastatic colorectal cancer (mCRC): personalized medicine at work. Hematol Oncol Clin North Am 2015; 29 (1) 43-60
  • 87 Bao J, Ni Y, Qin H , et al. Rab27b is a potential predictor for metastasis and prognosis in colorectal cancer. Gastroenterol Res Pract 2014; 2014: 913106
  • 88 Surinova S, Choi M, Tao S , et al. Prediction of colorectal cancer diagnosis based on circulating plasma proteins. EMBO Mol Med 2015; 7 (9) 1166-1178
  • 89 Xu L, Li M, Wang M, Yan D, Feng G, An G. The expression of microRNA-375 in plasma and tissue is matched in human colorectal cancer. BMC Cancer 2014; 14: 714
  • 90 Yuan D, Li K, Zhu K, Yan R, Dang C. Plasma miR-183 predicts recurrence and prognosis in patients with colorectal cancer. Cancer Biol Ther 2015; 16 (2) 268-275
  • 91 Sümbül AT, Göğebakan B, Bayram S, Batmacı CY, Öztuzcu S. MicroRNA 211 expression is upregulated and associated with poor prognosis in colorectal cancer: a case-control study. Tumour Biol 2015; 36 (12) 9703-9709
  • 92 Brunet-Vega A, Pericay C, Quílez ME, Ramírez-Lázaro MJ, Calvet X, Lario S. Variability in microRNA recovery from plasma: Comparison of five commercial kits. Anal Biochem 2015; 488: 28-35
  • 93 Spindler KL, Pallisgaard N, Andersen RF, Brandslund I, Jakobsen A. Circulating free DNA as biomarker and source for mutation detection in metastatic colorectal cancer. PLoS ONE 2015; 10 (4) e0108247
  • 94 Bianchi DW, Chudova D, Sehnert AJ , et al. Noninvasive Prenatal Testing and Incidental Detection of Occult Maternal Malignancies. JAMA 2015; 314 (2) 162-169
  • 95 Mouliere F, El Messaoudi S, Pang D, Dritschilo A, Thierry AR. Multi-marker analysis of circulating cell-free DNA toward personalized medicine for colorectal cancer. Mol Oncol 2014; 8 (5) 927-941
  • 96 Lin CC, Lin JK, Lin TC , et al. The prognostic role of microsatellite instability, codon-specific KRAS, and BRAF mutations in colon cancer. J Surg Oncol 2014; 110 (4) 451-457
  • 97 Lin PC, Lin JK, Lin CH , et al. Clinical Relevance of Plasma DNA Methylation in Colorectal Cancer Patients Identified by Using a Genome-Wide High-Resolution Array. Ann Surg Oncol 2015; 22 (Suppl. 03) S1419-S1427
  • 98 Molnar B, Sipos F, Galamb O, Tulassay Z. Molecular detection of circulating cancer cells. Role in diagnosis, prognosis and follow-up of colon cancer patients. Dig Dis 2003; 21 (4) 320-325
  • 99 Lyberopoulou A, Aravantinos G, Efstathopoulos EP , et al. Mutational analysis of circulating tumor cells from colorectal cancer patients and correlation with primary tumor tissue. PLoS ONE 2015; 10 (4) e0123902
  • 100 Yen LC, Yeh YS, Chen CW , et al. Detection of KRAS oncogene in peripheral blood as a predictor of the response to cetuximab plus chemotherapy in patients with metastatic colorectal cancer. Clin Cancer Res 2009; 15 (13) 4508-4513