Synlett 2019; 30(03): 319-324
DOI: 10.1055/s-0037-1610353
letter
© Georg Thieme Verlag Stuttgart · New York

Additive- and Oxidant-Free Expedient Synthesis of Benzimidazoles Catalyzed by Cobalt Nanocomposites on N-Doped Carbon

Zhaozhan Wang ◊
,
Tao Song ◊
,
Yong Yang*
Key CAS Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, P. R. of China   eMail: yangyong@qibebt.ac.cn
› Institutsangaben
We acknowledge financial support from QIBEBT, DICP & QIBEBT (Grant No. DICP & QIBEBT UN201704) and from the Dalian National Laboratory for Clean Energy (DNL) of the Chinese Academy of Sciences.
Weitere Informationen

Publikationsverlauf

Received: 22. Oktober 2018

Accepted after revision: 16. November 2018

Publikationsdatum:
14. Januar 2019 (online)


These authors contributed equally.

Abstract

A one-pot direct synthesis of a wide range of biologically active benzimidazoles through coupling of phenylenediamines and aldehydes catalyzed by a highly recyclable nonnoble cobalt nanocomposite was developed. A broad set of benzimidazoles can be efficiently synthesized in high yields and with good functional-group tolerance under additive- and oxidant-free mild conditions. The catalyst can be easily recycled for successive uses, and the process permits gram-scale syntheses of benzimidazoles.

Supporting Information

 
  • References and Notes

    • 1a Kim JS, Gatto B, Yu C, Liu A, LaVoie EJ. J. Med. Chem. 1996; 39: 992
    • 1b Horton DA, Bourne GT, Smythe ML. Chem. Rev. 2003; 103: 893
    • 1c Boydston DA. J, Pecinovsky CS, Chao ST, Bielawski CW. J. Am. Chem. Soc. 2007; 129: 14550
    • 1d Palmer AM, Chiesa V, Schmid A, Münch G, Grobbel B, Zimmermann PJ, Brehm C, Buhr W, Simon W.-A, Kromer W, Postius S, Volz J, Hess D. J. Med. Chem. 2010; 53: 3645
    • 1e Roth T, Morningstar ML, Boyer PL, Hughes SH, Buckheit RW. Jr, Michejda CJ. J. Med. Chem. 1997; 40: 4199
    • 1f Dessingou J, Mitra A, Tabbasum K, Baghel GS, Rao CP. J. Org. Chem. 2012; 77: 371
    • 1g Dai D, Burgeon JR, Gharaibeh DN, Moore AL, Larson RA, Cerruti NR, Amberg SM, Bolken TC, Hruby DE. Bioorg. Med. Chem. Lett. 2013; 23: 744
    • 2a Grimmett MR. Comprehensive Heterocyclic Chemistry . Vol. 5, Chap. 4.08. Katritzky AR, Rees CW. Pergamon; Oxford: 1984: 457
    • 2b Wright JB. Chem. Rev. 1951; 48: 401
    • 2c Middleton RW, Wibberley DG. J. Heterocycl. Chem. 1980; 17: 1757
    • 2d Hisano T, Ichikawa M, Tsumoto K, Tasaki M. Chem. Pharm. Bull. 1982; 30: 2996
    • 3a Czarny A, Wilson WD, Boykin DW. J. Heterocycl. Chem. 1996; 33: 1393
    • 3b Tidwell RR, Geratz JD, Dann O, Volz G, Zeh D, Loewe H. J. Med. Chem. 1978; 21: 613
    • 3c Fairley TA, Tidwell RR, Donkor I, Naiman NA, Ohemeng KA, Lombardy RJ, Bentley JA, Cory M. J. Med. Chem. 1993; 36: 1746
    • 4a Bourgrin K, Loupy A, Soufiaoui M. Tetrahedron 1998; 54: 8055
    • 4b Reddy GV, Rao VV. V. N. S, Narsaiah B, Rao PS. Synth. Commun. 2002; 32: 2467
    • 4c Ben-Alloum A, Bakkas S, Soufiaoui M. Tetrahedron Lett. 1998; 39: 4481

      For selected examples of coupling reactions, see:
    • 5a Kasprzak A, Bystrzejewski M, Poplawska M. Dalton Trans. 2018; 47: 6314
    • 5b Singh MP, Sasmal S, Lu W, Chatterjee MN. Synthesis 2000; 1380
    • 5c Kawashita Y, Nakamichi N, Kawabata H, Hayashi M. Org. Lett. 2003; 5: 3713
    • 5d Trivedi R, De SK, Gibbs RA. J. Mol. Catal. A: Chem. 2006; 245: 8

      For some selected examples involving an acceptorless dehydrogenation strategy, see:
    • 7a Hille T, Irrgang T, Kempe R. Chem. Eur. J. 2014; 20: 5569
    • 7b Prosentjit D, Yehoshoa BD, Milstein D. ACS Catal. 2017; 7: 7456
    • 7c Li L, Luo Q, Cui H, Li R, Zhang J, Peng T. ChemCatChem 2018; 10: 1607
    • 7d Takeyama K, Wada K, Miuras H, Hosokawa S, Abe R, Inoue M. Catal. Sci. Technol. 2016; 6: 1677
    • 7e Nguyen TB, Ermolenko L, Al-Mourabit A. J. Am. Chem. Soc. 2013; 135: 118
    • 7f Shiraishi Y, Sugano Y, Tanaka S, Hirai T. Angew. Chem. Int. Ed. 2010; 122: 1700
    • 7g Fukutake T, Wada K, Hosokawa GC, Liu S, Feng Q. Catal. Today 2018; 303: 235

      For some selected examples involving a borrowing-hydrogen strategy, see:
    • 8a Xu Z, Yu X, Sang X, Wang D. Green Chem. 2018; 20: 2571
    • 8b Guan Q, Sun Q, Wen L, Zha Z, Yang Y, Wang Z. Org. Biomol. Chem. 2018; 16: 2088
    • 8c Feng F, Ye J, Cheng Z, Xu X, Zhang Q, Ma L, Lu C, Li X. RSC Adv. 2016; 6: 72750
    • 8d Tang L, Guo X, Yang Y, Zha Z, Wang Z. Chem. Commun. 2014; 50: 6145
    • 8e Nguyen TB, Le Bescont J, Ermolenko L, Al-Mourabit A. Org. Lett. 2013; 12: 6218
  • 9 Song T, Ren P, Duan Y, Wang Z, Chen X, Yang Y. Green Chem. 2018; 20: 4629

    • For some selected example involving C–H functionalization, see:
    • 10a Brasche G, Buchwald SL. Angew. Chem. Int. Ed. 2008; 47: 1932
    • 10b Brain CT, Steer JT. J. Org. Chem. 2003; 68: 6814
    • 10c Shen M, Driver TG. Org. Lett. 2008; 10: 3367
    • 10d Diao X, Wang Y, Jiang Y, Ma D. J. Org. Chem. 2009; 74: 7974
    • 10e Peng J, Ye M, Zong C, Hu F, Feng L, Wang X, Wang Y, Chen C. J. Org. Chem. 2011; 76: 716
  • 11 2-Phenyl-1H-benzimidazole (3a); Typical Procedure A 25 mL sealed tube equipped with a magnetic stirrer bar was charged with catalyst CoO x @NC-800 (20 mg, 10 mol%) then sealed with a rubber septum and evacuated to remove air. Benzene-1,2-diamine (0.2 mmol), PhCHO (0.24 mmol), and THF (5 mL) were injected into the tube from a syringe, and the tube was placed in a preheated oil bath at 100 °C for 8 h. When the reaction was complete, the mixture was filtered and the organic layers were collected, combined, dried (Na2SO4), and concentrated under vacuum. The residue was purified by passage through a column of silica gel (200–300 mesh) to give a white solid; yield: 38.1 mg (98%). 1H NMR (400 MHz, DMSO-d 6): δ = 8.19 (s, 2 H), 7.59 (m, 5 H), 7.22 (s, 2 H). 13C NMR (101 MHz, DMSO-d 6): δ = 151.7, 139.8, 130.5, 130.4, 129.4, 126.9, 122.6, 115.7.
  • 12 Gram-Scale Synthesis of 2-Phenyl-1H-benzimidazole (3a) A 500 mL round-bottomed flask equipped with a condenser and a magnetic stirrer bar was charged with benzene-1,2-diamine (1 g, 9.25 mmol), PhCHO (13.3 mmol), and catalyst CoO x @NC-800 (925 mg, 10 mol%), then sealed with a rubber septum and evacuated to remove air. THF (200 mL) was added to the flask from a syringe, and the mixture was refluxed for 8 h. When the reaction was complete, the mixture was filtered, and the filtrate was concentrated in a rotary evaporator. The product was then purified by column chromatography; yield: 1.54 g (86%). The structure of the product was confirmed by NMR spectroscopy.