Synthesis 2020; 52(08): 1223-1230
DOI: 10.1055/s-0039-1690737
special topic
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Phenanthrenes via Palladium-Catalyzed Three-Component Domino Reaction of Aryl Iodides, Internal Alkynes, and o-Bromobenzoic Acids

Yuzhong Yang
,
Liwei Zhou
,
Xiumei Yang
,
Xiai Luo
,
Guobo Deng
,
Yuan Yang
National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, P. R. of China   Email: yuanyang@hunnu.edu.cn   Email: yliang@hunnu.edu.cn
,
Yun Liang
National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, P. R. of China   Email: yuanyang@hunnu.edu.cn   Email: yliang@hunnu.edu.cn
› Author Affiliations
This work was supported by the National Natural Science Foundation of China (21572051, 21602057, 21901071, and 21971061), Scientific Research Foundation of Hunan Provincial Education Department (18A002), and Science and Technology Planning Project of Hunan Province (2018TP1017).
Further Information

Publication History

Received: 28 August 2019

Accepted after revision: 16 October 2019

Publication Date:
29 October 2019 (online)


Published as part of the Special Topic Domino C–H Functionalization Reaction/Cascade Catalysis

Abstract

A new palladium-catalyzed domino alkyne insertion/C–H activation/decarboxylation sequence has been developed, which provides an efficient approach for synthesizing a variety of functionalized phenanthrenes in moderate to good yields. The method shows broad substrate scope and good functional group tolerance by employing readily available materials, including aryl iodides, internal alkynes, and o-bromobenzoic acids, as three-component coupling partners.

Supporting Information

 
  • References

    • 1a Li M, An C, Marszalek T, Guo X, Long Y.-Z, Yin H, Gu C, Baumgarten M, Pisula W, Mullen K. Chem. Mater. 2015; 27: 2218
    • 1b Wang S, Yan X, Cheng Z, Zhang H, Liu Y, Wang Y. Angew. Chem. Int. Ed. 2015; 54: 13068
    • 1c Machado AM, Munaro M, Martins TD, Davila LY. A, Giro R, Caldas MJ, Atvars TD. Z, Akcelrud LC. Macromolecules 2006; 39: 3398
    • 2a Lin J.-C, Yang S.-C, Hong T.-M, Yu S.-L, Shi Q, Wei L, Chen H.-Y, Yang P.-C, Lee K.-H. J. Med. Chem. 2009; 52: 1903
    • 2b Wei L, Shi Q, Bastow KF, Brossi A, Morris-Natschke SL, Nakagawa-Goto K, Wu T.-S, Pan S.-L, Teng C.-M, Lee K.-H. J. Med. Chem. 2007; 50: 3674
    • 2c Banwell MG, Bezos A, Burns C, Kruszelnicki I, Parish CR, Su S, Sydnes MO. Bioorg. Med. Chem. Lett. 2006; 16: 181

      Selected examples, see:
    • 3a Jin R, Chen Y, Liu W, Xu D, Li Y, Ding A, Guo H. Chem. Commun. 2016; 52: 9909
    • 3b Matsuda T, Kato K, Goya T, Shimada S, Murakami M. Chem. Eur. J. 2016; 22: 1941
    • 3c Yamamoto Y, Matsui K, Shibuya M. Chem. Eur. J. 2015; 21: 7245
    • 3d Kwon Y, Cho H, Kim S. Org. Lett. 2013; 15: 920
    • 3e Ouyang X.-H, Song R.-J, Li J.-H. Chem. Asian J. 2018; 13: 2316
    • 3f Carreras J, Gopakumar G, Gu L, Gimeno A, Linowski P, Petuskova J, Thiel W, Alcarazo M. J. Am. Chem. Soc. 2013; 135: 18815
    • 3g Komeyama K, Igawa R, Takaki K. Chem. Commun. 2010; 46: 1748
    • 3h Mamane V, Hannen P, Fürstner A. Chem. Eur. J. 2004; 10: 4556
    • 3i Fürstner A, Mamane V. J. Org. Chem. 2002; 67: 6264
    • 4a McAtee CC, Riehl PS, Schindler CS. J. Am. Chem. Soc. 2017; 139: 2960
    • 4b Xia Y, Qu P, Liu Z, Ge R, Xiao Q, Zhang Y, Wang J. Angew. Chem. Int. Ed. 2013; 52: 2543
    • 4c Xia Y, Liu Z, Xiao Q, Qu P, Ge R, Zhang Y, Wang J. Angew. Chem. Int. Ed. 2012; 51: 5714
    • 4d Bera K, Sarkar S, Jalal S, Jana U. J. Org. Chem. 2012; 77: 8780
    • 5a Matsushima T, Kobayashi S, Watanabe S. J. Org. Chem. 2016; 81: 7799
    • 5b Murai M, Hosokawa N, Roy D, Takai K. Org. Lett. 2014; 16: 4134
    • 5c Iuliano A, Piccioli P, Fabbri D. Org. Lett. 2004; 6: 3711

      Selected example, see:
    • 6a Ozaki K, Murai K, Matsuoka W, Kawasumi K, Ito H, Itami I. Angew. Chem. Int. Ed. 2017; 56: 1361
    • 6b Ozaki K, Kawasumi K, Murai K, Ito H, Itami I. Nat. Commun. 2015; 6: 6251
    • 6c Frejka D, Ulč J, Kantchev EA. B, Císařová I, Kotora M. ACS Catal. 2018; 8: 10290
    • 6d Yan J, Yoshikai N. Org. Lett. 2017; 19: 6630
    • 6e Yang Y.-Z, Song R.-J, Li J.-H. Org. Lett. 2019; 21: 3228
    • 6f Shoji Y, Tanaka N, Muranaka S, Shigeno N, Sugiyama H, Takenouchi K, Hajjaj F, Fukushima T. Nat. Commun. 2016; 7: 12704
    • 6g Wu Y, Wu F, Zhu D, Luo B, Wang H, Hu Y, Wen S, Huang P. Org. Biomol. Chem. 2015; 13: 10386
    • 6h Nagata T, Hirano K, Satoh T, Miura M. J. Org. Chem. 2014; 79: 8960
    • 6i Lin Y.-D, Cho C.-L, Ko C.-W, Pulte A, Wu Y.-T. J. Org. Chem. 2012; 77: 9979
    • 6j Korotvička A, Csařov I, Roithov J, Kotora M. Chem. Eur. J. 2012; 18: 4200
    • 6k Matsumoto A, Ilies L, Nakamura E. J. Am. Chem. Soc. 2011; 133: 6557
    • 6l Wang C, Rakshit S, Glorius F. J. Am. Chem. Soc. 2010; 132: 14006
    • 6m Shimizu M, Nagao I, Tomioka Y, Kadowaki T, Hiyama T. Tetrahedron 2011; 67: 8014
    • 6n Shimizu M, Nagao I, Tomioka Y, Hiyama T. Angew. Chem. Int. Ed. 2008; 47: 8096
    • 6o Kanno K.-i, Liu Y, Iesato A, Nakajima K, Takahashi T. Org. Lett. 2005; 7: 5453
    • 7a Gou B.-B, Yang H, Sun H.-R, Chen J, Wu J, Zhou L. Org. Lett. 2019; 21: 80
    • 7b Iwasaki M, Araki Y, Iino S, Nishihara Y. J. Org. Chem. 2015; 80: 9247
    • 7c Shimizu M, Tomioka Y, Nagao I, Kadowaki T, Hiyama T. Chem. Asian J. 2012; 7: 1644
    • 7d Worlikar SA, Larock RC. J. Org. Chem. 2009; 74: 9132
    • 8a Song J, Wang S, Sun H, Fan Y, Xiao K, Qian Y. Org. Biomol. Chem. 2019; 17: 3328
    • 8b Iwasaki M, Araki Y, Nishihara Y. J. Org. Chem. 2017; 82: 6242
    • 8c Liu Z, Larock RC. Angew. Chem. Int. Ed. 2007; 46: 2535
    • 8d Catellani M, Motti E, Baratta S. Org. Lett. 2001; 3: 3611
    • 8e Yoshikawa E, Yamamoto Y. Angew. Chem. Int. Ed. 2000; 39: 173
    • 8f Yoshikawa E, Radhakrishnan KV, Yamamoto Y. J. Am. Chem. Soc. 2000; 122: 7280
    • 8g Peña D, Pérez D, Guitián E, Castedo L. J. Am. Chem. Soc. 1999; 121: 5827
    • 8h Radhakrishnan KV, Yoshikawa E, Yamamoto Y. Tetrahedron Lett. 1999; 40: 7533
    • 8i Dyker G, Kellner A. Tetrahedron Lett. 1994; 35: 7633
    • 9a Fu WC, Wang Z, Chan WT. K, Lin Z, Kwong FY. Angew. Chem. Int. Ed. 2017; 56: 7166
    • 9b Zhao Q, Fu WC, Kwong FY. Angew. Chem. Int. Ed. 2018; 57: 3381
    • 9c Fu WC, Zheng B, Zhao Q, Chan WT. K, Kwong FY. Org. Lett. 2017; 19: 4335
    • 10a Domino Reactions: Concepts for Efficient Organic Synthesis. Tietze LF. Wiley-VCH; Weinheim: 2014
    • 10b Domino Reactions in Organic Synthesis, 1st ed. Tietze LF, Brasche G, Gericke KM. Wiley-VCH; Weinheim: 2006

      For reviews, see:
    • 11a Ping Y, Li Y, Zhu J, Kong W. Angew. Chem. Int. Ed. 2019; 58: 1562
    • 11b Franzoni I, Yoon H, García-López J.-A, Poblador-Bahamonde AI, Lautens M. Chem. Sci. 2018; 9: 1496
    • 11c Mehta VP, García-López J.-A. ChemCatChem 2017; 9: 1149
    • 11d Pérez-Gómez M, Navarro L, Saura-Llamas I, Bautista D, Lautens M, García-López J.-A. Organometallics 2017; 36: 4465

      For selected reviews, see:
    • 12a Liu Z.-S, Gao Q, Cheng H.-G, Zhou Q. Chem. Eur. J. 2018; 24: 15461
    • 12b Della Ca’ N, Fontana M, Motti E, Catellani M. Acc. Chem. Res. 2016; 49: 1389
    • 12c Ye J, Lautens M. Nat. Chem. 2015; 7: 863
    • 12d Martins A, Mariampillai B, Lautens M. Top. Curr. Chem. 2009; 292: 1
    • 13a Zhou B, Wu Z, Ma D, Ji X, Zhang Y. Org. Lett. 2018; 20: 6440
    • 13b Zhou B, Lu A, Shao C, Liang X, Zhang Y. Chem. Commun. 2018; 54: 10598
    • 13c Zhou B, Wu Z, Qi W, Sun X, Zhang Y. Adv. Synth. Catal. 2018; 360: 4480
    • 13d Tian Q, Larock RC. Org. Lett. 2000; 2: 3329
    • 13e Dyker G, Nerenz F, Siemsen P, Bubenitschek P, Jones PG. Chem. Ber. 1996; 129: 1265
    • 14a Li W, Chen W, Zhou B, Xu Y, Deng G, Liang Y, Yang Y. Org. Lett. 2019; 21: 2718
    • 14b Yang Y, Zhou B, Zhu X, Deng G, Liang Y, Yang Y. Org. Lett. 2018; 20: 5402
    • 14c Xu Y, Liu X, Chen W, Deng G, Liang Y, Yang Y. J. Org. Chem. 2018; 83: 13930
    • 14d Li W, Xiao G, Deng G, Liang Y. Org. Chem. Front. 2018; 5: 1488
    • 14e Xiao G, Chen L, Deng G, Liu J, Liang Y. Tetrahedron Lett. 2018; 59: 1836
    • 14f Luo X, Xu Y, Xiao G, Liu W, Qian C, Deng G, Song J, Liang Y, Yang C. Org. Lett. 2018; 20: 2997
  • 15 Yu J, Yan H, Zhu C. Angew. Chem. Int. Ed. 2016; 55: 1143