Synthesis 2020; 52(13): 1855-1873
DOI: 10.1055/s-0039-1690847
review
© Georg Thieme Verlag Stuttgart · New York

Recent Advances in the Synthesis of Enantiomerically Enriched Diaryl, Aryl Heteroaryl, and Diheteroaryl Alcohols through Addition of Organometallic Reagents to Carbonyl Compounds

Wystan K. O. Teixeira
a   Centre of Excellence for Research in Sustainable Chemistry (CERSusChem), Departamento de Química, Universidade Federal de São Carlos – UFSCar, Rodovia Washington Luís, km 235 - SP-310, São Carlos, São Paulo 13565-905, Brazil   Email: rschwab@ufscar.br
,
Danilo Yano de Albuquerque
a   Centre of Excellence for Research in Sustainable Chemistry (CERSusChem), Departamento de Química, Universidade Federal de São Carlos – UFSCar, Rodovia Washington Luís, km 235 - SP-310, São Carlos, São Paulo 13565-905, Brazil   Email: rschwab@ufscar.br
,
Senthil Narayanaperumal
b   Head-Department of Chemistry, Dayananda Sagar Academy of Technology & Management-DSATM, Kanakapura Road, Bengaluru-560082, India   Email: senthilnp@yahoo.com
,
a   Centre of Excellence for Research in Sustainable Chemistry (CERSusChem), Departamento de Química, Universidade Federal de São Carlos – UFSCar, Rodovia Washington Luís, km 235 - SP-310, São Carlos, São Paulo 13565-905, Brazil   Email: rschwab@ufscar.br
› Author Affiliations
The authors are grateful to the funding agencies that supported this work, Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, 2013/06558-3 and 2014/50249-8), GlaxoSmithKline, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, 475203/2013-5) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, 001) for financial support and fellowships.
Further Information

Publication History

Received: 13 December 2019

Accepted after revision: 08 February 2020

Publication Date:
16 March 2020 (online)


Abstract

Enantiomerically enriched diaryl, aryl heteroaryl, and dihetero­aryl alcohols are an important family of compounds known for their biological properties. Moreover, these molecules are highly privileged scaffolds used as building blocks for the synthesis of pharmaceutically relevant products. This short review provides background on the enantioselective arylation and heteroarylation of carbonyl compounds, as well as, the most significant improvements in this field with special emphasis on the application of organometallic reagents.

1 Introduction

2 Background on the Enantioselective Synthesis of Diaryl, Aryl Heteroaryl, and Diheteroaryl Alcohols

3 Organozinc Reagents

4 Organolithium Reagents

5 Grignard Reagents

6 Organoaluminum Reagents

7 Organotitanium Reagents

8 Organobismuth Reagents

9 Miscellaneous

10 Conclusion

 
  • References

    • 1a Schmidt F, Stemmler RT, Rudolph J, Bolm C. Chem. Soc. Rev. 2006; 35: 454
    • 1b Paixão MW, Braga AL, Lüdtke DS. J. Braz. Chem. Soc. 2008; 19: 813
    • 1c Ameen D, Snape TJ. Med. Chem. Commun. 2013; 4: 893
    • 2a Barouh V, Dall H, Hite G. J. Med. Chem. 1971; 14: 834
    • 2b Harikrishnan A, Sanjeevi J, Ramanathan CR. Org. Biomol. Chem. 2015; 13: 3633
    • 2c Corey EJ, Helal CJ. Tetrahedron Lett. 1996; 37: 5675
    • 3a Guo ZY, Raeissi S, White RB, Stevens JC. Drug Metab. Dispos. 1997; 25: 390
    • 3b Müller P, Nury P, Bernardinelli G. Eur. J. Org. Chem. 2001; 4137
    • 3c Sui Y.-Z, Zhang X.-C, Wu J.-W, Li S, Zhou J.-N, Li M, Fang W, Chan AS. C, Wu J. Chem. Eur. J. 2012; 18: 7486
    • 4a Casy AF, Drake AF, Ganellin CR, Mercer AD, Upton C. Chirality 1992; 4: 356
    • 4b Rekker RF, Timmerman H, Harms AF, Nauta WT. Arzneim.-Forsch. 1971; 21: 688
    • 5a Ebnöther A, Weber HP. Helv. Chim. Acta 1976; 59: 2462
    • 5b Lee SY, Jung JW, Kim T.-H, Kim H.-D. Arch. Pharmacal Res. 2015; 38: 2131
    • 5c Fournier AM, Brown RA, Farnaby W, Miyatake-Ondozabal H, Clayden J. Org. Lett. 2010; 12: 2222
  • 6 Torrens A, Castrillo JA, Claparols A, Redondo J. Synlett 1999; 765
  • 7 Murai S, Shimano M, Yamamoto H, Koyama T, Nakamura T, Ogawa M, Watanuki M, Okamoto T, Hori T. (Kaken Pharmaceutical Co., Ltd., Japan) EP 0529365A1, 1993
  • 8 Polster CS, Wu S.-J, Gueorguieva I, Sperry DC. Mol. Pharmaceutics 2015; 12: 1131
    • 9a Yu K.-L, Spinazze P, Ostrowski J, Currier SJ, Pack EJ, Hammer L, Roalsvig T, Honeyman JA, Tortolani DR, Reczek PR, Mansuri MM, Starrett JE. J. Med. Chem. 1996; 39: 2411
    • 9b Klaholz BP, Mitschler A, Moras D. J. Mol. Biol. 2000; 302: 155
    • 10a Corey EJ, Helal CJ. Tetrahedron Lett. 1995; 36: 9153
    • 10b Ohkuma T, Koizumi M, Ikehira H, Yokozawa T, Noyori R. Org. Lett. 2000; 2: 659
    • 10c Chen C.-y, Reamer RA, Chilenski JR, McWilliams CJ. Org. Lett. 2003; 5: 5039
    • 10d Zhang WH, Cai Y, Liu X, Fang Y, Xu JH. Prog. Chem. (Beijing, China) 2007; 19: 1537
    • 11a Binder CM, Singaram B. Org. Prep. Proced. Int. 2011; 43: 139
    • 11b Bauer T. Coordin. Chem. Rev. 2015; 299: 83
    • 11c Harada T. Chem. Rec. 2016; 16: 1256
  • 12 Mondal S, Panda G. RSC Adv. 2014; 4: 28137
    • 13a Tomioka K, Nakajima M, Koga K. Chem. Lett. 1987; 65
    • 13b Wang J.-T, Fan X, Feng X, Qian Y.-M. Synthesis 1989; 291
    • 13c Soai K, Kawase Y, Oshio A. J. Chem. Soc., Perkin Trans. 1 1991; 1613
    • 13d Nakajima M, Tomioka K, Koga K. Tetrahedron 1993; 49: 9751
  • 14 Weber B, Seebach D. Tetrahedron 1994; 50: 7473
    • 15a Knochel P, Vettel S, Eisenberg C. Appl. Organomet. Chem. 1995; 9: 175
    • 15b Knochel P, Singer RD. Chem. Rev. 1993; 93: 2117
    • 15c Soai K, Niwa S. Chem. Rev. 1992; 92: 833
    • 15d Kitamura M, Okada S, Suga S, Noyori R. J. Am. Chem. Soc. 1989; 111: 4028
  • 16 Dosa PI, Ruble JC, Fu GC. J. Org. Chem. 1997; 62: 444
  • 17 Bolm C, Muñiz K. Chem. Commun. 1999; 1295
    • 18a Zhao G, Li X.-G, Wang X.-R. Tetrahedron: Asymmetry 2001; 12: 399
    • 18b Ko D.-H, Kim KH, Ha D.-C. Org. Lett. 2002; 4: 3759
    • 19a Huang W.-S, Hu Q.-S, Pu L. J. Org. Chem. 1999; 64: 7940
    • 19b Huang W.-S, Pu L. Tetrahedron Lett. 2000; 41: 145
    • 20a Bolm C, Hermanns N, Hildebrand JP, Muñiz K. Angew. Chem. Int. Ed. 2000; 39: 3465
    • 20b Bolm C, Kesselgruber M, Hermanns N, Hildebrand JP, Raabe G. Angew. Chem. Int. Ed. 2001; 40: 1488
    • 21a Rudolph J, Rasmussen T, Bolm C, Norrby P.-O. Angew. Chem. Int. Ed. 2003; 40: 3002
    • 21b Fontes M, Verdaguer X, Solà L, Pericàs MA, Riera A. J. Org. Chem. 2004; 69: 2532
    • 21c Rudolph J, Bolm C, Norrby P.-O. J. Am. Chem. Soc. 2005; 127: 1548
  • 22 Bolm C, Rudolph J. J. Am. Chem. Soc. 2002; 124: 14850
    • 23a Rudolph J, Hermanns N, Bolm C. J. Org. Chem. 2004; 69: 3997
    • 23b Schmidt F, Rudolph J, Bolm C. Adv. Synth. Catal. 2007; 349: 703
  • 24 Jimeno C, Sayalero S, Fjermestad T, Colet G, Maseras F, Pericàs MA. Angew. Chem. Int. Ed. 2008; 47: 1098
    • 25a Rudolph J, Schmidt F, Bolm C. Adv. Synth. Catal. 2004; 346: 867
    • 25b Bolm C, Zani L, Rudolph J, Schiffers I. Synthesis 2004; 2173
    • 25c Dahmen S, Lormann M. Org. Lett. 2005; 7: 4597
    • 25d Bolm C, Schmidt F, Zani L. Tetrahedron: Asymmetry 2005; 16: 1367
    • 26a Liu XY, Wu XY, Chai Z, Wu YY, Zhao G, Zhu SZ. J. Org. Chem. 2005; 70: 7432
    • 26b Wu X, Liu X, Zhao G. Tetrahedron: Asymmetry 2005; 16: 2299
    • 26c Magnus NA, Anzeveno PB, Coffey DS, Hay DA, Laurila ME, Schkeryantz JM, Shaw BW, Staszak MA. Org. Process Res. Dev. 2007; 11: 560
    • 26d Rolland J, Cambeiro XC, Rodríguez-Escrich C, Pericàs MA. Beilstein J. Org. Chem. 2009; 5: 56 ; DOI: org/10.3762/bjoc.5.56
    • 26e Liu C, Guo Z.-L, Weng J, Lu G, Chan AS. C. Chirality 2010; 22: 159
    • 26f Infante R, Nieto J, Andrés C. Org. Biomol. Chem. 2011; 9: 6691
    • 27a Braga AL, Lüdtke DS, Vargas F, Paixão MW. Chem. Commun. 2005; 2512
    • 27b Ito K, Tomita Y, Katsuki T. Tetrahedron Lett. 2005; 46: 6038
    • 27c Zhong J, Guo H, Wang M, Yin M, Wang M. Tetrahedron: Asymmetry 2007; 18: 734
    • 27d Wang M.-C, Wang X.-D, Ding X, Liu ZK. Tetrahedron 2008; 64: 2559
    • 27e Braga AL, Paixão MW, Westermann B. J. Org. Chem. 2008; 73: 2879
    • 27f Jin MJ, Sarkar SM, Lee DH, Qiu H. Org. Lett. 2008; 10: 1235
    • 27g Wouters AD, Trossini GH. G, Stefani HA, Lüdtke DS. Eur. J. Org. Chem. 2010; 2351
    • 27h Schwab RS, Soares LC, Dornelles L, Rodrigues OE. D, Paixão MW, Godoi M, Braga AL. Eur. J. Org. Chem. 2010; 3574
    • 27i Wei H, Yin L, Li X, Chan AS. C. Chirality 2011; 23: 222
    • 27j Soares LC, Alberto EE, Schwab RS, Taube PS, Nascimento V, Rodrigues OE. D, Braga AL. Org. Biomol. Chem. 2012; 10: 6595
    • 27k Song X, Hua Y.-Z, Shi J.-G, Sun P.-P, Wang M.-C, Chang J. J. Org. Chem. 2014; 79: 6087
    • 27l Wang Y, Zong H, Huang H, Song L. Tetrahedron: Asymmetry 2017; 28: 90
  • 28 Dosa PI, Fu GC. J. Am. Chem. Soc. 1998; 120: 445
    • 29a García C, Walsh PJ. Org. Lett. 2003; 5: 3641
    • 29b Betancort JM, García C, Walsh PJ. Synlett 2004; 749
    • 29c Prieto O, Ramón DJ, Yus M. Tetrahedron: Asymmetry 2003; 14: 1955
    • 29d Forrat VJ, Prieto O, Ramón DJ, Yus M. Chem. Eur. J. 2006; 12: 4431
    • 29e Hatano M, Miyamoto T, Ishihara K. Org. Lett. 2007; 9: 4535
  • 30 Sakai M, Ueda M, Miyaura N. Angew. Chem. Int. Ed. 1998; 37: 3279
    • 31a Kneisel FF, Dochnahl M, Knochel P. Angew. Chem. Int. Ed. 2004; 43: 1017
    • 31b Krasovskiy A, Malakhov V, Gavryushin A, Knochel P. Angew. Chem. Int. Ed. 2006; 45: 6040
    • 31c Wunderlich SH, Knochel P. Angew. Chem. Int. Ed. 2007; 46: 7685
    • 31d Mosrin M, Knochel P. Org. Lett. 2009; 11: 1837
  • 32 DeBerardinis AM, Turlington M, Pu L. Org. Lett. 2008; 10: 2709
  • 33 DeBerardinis AM, Turlington M, Ko J, Sole L, Pu L. J. Org. Chem. 2010; 75: 2836
  • 34 Wujkowska Z, Jarzyński S, Pieczonka AM, Leśniak S, Rachwalski M. Tetrahedron: Asymmetry 2016; 27: 1238
    • 35a Phapale VB, Cárdenas DJ. Chem. Soc. Rev. 2009; 38: 1598
    • 35b Brittain WD. G, Cobb SL. Org. Biomol. Chem. 2018; 16: 10
    • 35c Heravi MM, Hashemi E, Nazari N. Mol. Diversity 2014; 18: 441
  • 36 Shannon J, Bernier D, Rawson D, Woodward S. Chem. Commun. 2007; 3945
  • 37 Kutamura M, Suga S, Kawai K, Noyori R. J. Am. Chem. Soc. 1986; 108: 6071
  • 38 Glynn D, Shannon J, Woodward S. Chem. Eur. J. 2010; 16: 1053
    • 39a Fillon H, Gosmini C, Périchon J. J. Am. Chem. Soc. 2003; 125: 3867
    • 39b Kazmierski I, Gosmini C, Paris J.-M, Périchon J. Tetrahedron Lett. 2003; 44: 6417
    • 40a Rouen M, Chaumont P, Barozzino-Consiglio G, Maddaluno J, Harrison-Marchand A. Chem. Eur. J. 2018; 24: 9238
    • 40b Chaumont-Olive P, Rouen M, Barozzino-Consiglio G, Abdeladhim AB, Maddaluno J, Harrison-Marchand A. Angew. Chem. Int. Ed. 2019; 58: 3193
    • 41a Wietelmann U, Klett J. Z. Anorg. Allg. Chem. 2018; 644: 194
    • 41b Wu G, Huang M. Chem. Rev. 2006; 106: 2596
    • 41c Chinchilla R, Nájera C, Yus M. Tetrahedron 2005; 61: 3139
    • 41d Mallan JM, Bebb RL. Chem. Rev. 1969; 69: 693
  • 42 Kim JG, Walsh PJ. Angew. Chem. Int. Ed. 2006; 45: 4175
  • 43 Salvi L, Kim JG, Walsh PJ. J. Am. Chem. Soc. 2009; 131: 12483
  • 44 Nakagawa Y, Muramatsu Y, Harada T. Eur. J. Org. Chem. 2010; 6535
  • 45 Uenishi A, Nakagawa Y, Osumi H, Harada T. Chem. Eur. J. 2013; 19: 4896
  • 46 Hayashi Y, Yamamura N, Kusukawa T, Harada T. Chem. Eur. J. 2016; 22: 12095
  • 47 Hatano M, Gouzu R, Misuno T, Abe H, Yamada T, Ishihara K. Catal. Sci. Technol. 2011; 1: 1149
  • 48 Matsuda A, Ushimaru T, Kobayashi Y, Harada T. Chem. Eur. J. 2017; 23: 8605
  • 49 Yang Y.-X, Liu Y, Zhang L, Jia Y.-E, Wang P, Zhuo F.-F, An X.-T, Da C.-S. J. Org. Chem. 2014; 79: 10696
  • 50 Luderer M, Bailey WF, Luderer MR, Fair JD, Dancer RJ, Sommer MB. Tetrahedron: Asymmetry 2009; 20: 981
  • 51 Muramatsu Y, Harada T. Chem. Eur. J. 2008; 14: 10560
  • 52 Knochel P, Dohle W, Gommermann N, Kneisel FF, Kopp F, Korn T, Sapountzis I, Vu VA. Angew. Chem. Int. Ed. 2003; 42: 4302
  • 53 Muramatsu Y, Kanehira S, Tanigawa M, Miyawaki Y, Harada T. Bull. Chem. Soc. Jpn. 2010; 83: 19
  • 54 Itakura D, Harada T. Synlett 2011; 2875
  • 55 Krasovskiy A, Knochel P. Angew. Chem. Int. Ed. 2004; 43: 3333
  • 56 Akai J, Watanabe S, Michikawa K, Harada T. Org. Lett. 2017; 19: 3632
  • 57 Watanabe S, Nakaya N, Akai J, Kanaori K, Harada T. Org. Lett. 2018; 20: 2737
  • 58 Fernández-Mateos E, Maciá B, Yus M. Eur. J. Org. Chem. 2014; 6519
  • 59 Fan X.-Y, Yang Y.-X, Zhuo F.-F, Yu S.-L, Li X, Guo Q.-P, Du Z.-X, Da C.-S. Chem. Eur. J. 2010; 16: 7988
    • 60a You J.-S, Hsieh S.-H, Gau H.-M. Chem. Commun. 2001; 1546
    • 60b Biswas K, Prieto O, Goldsmith PJ, Woodward S. Angew. Chem. Int. Ed. 2005; 44: 2232
  • 61 Wu K.-H, Gau H.-M. J. Am. Chem. Soc. 2006; 128: 1480
  • 62 Chen C.-A, Wu K.-H, Gau H.-M. Angew. Chem. Int. Ed. 2007; 46: 5373
  • 63 Biradar DB, Zhou S, Gau H.-M. Org. Lett. 2009; 11: 3386
    • 64a Duchene-Marullaz P, Jovanovic D, Busch N, Vacher J. Arch. Int. Pharmacodyn. Ther. 1963; 141: 465
    • 64b Roland YM. US 3145204, 1964
  • 65 Chen C.-A, Wu K.-H, Gau H.-M. Adv. Synth. Catal. 2008; 350: 1626
  • 66 Wu K.-H, Chuang D.-W, Chen C.-A, Gau H.-M. Chem. Commun. 2008; 2343
  • 67 Zhou S, Wu K.-H, Chen C.-A, Gau H.-M. J. Org. Chem. 2009; 74: 3500
  • 68 Zhang L, Tu B, Ge M, Li Y, Chen L, Wang W, Zhou S. J. Org. Chem. 2015; 80: 8307
  • 69 Ge M, Zhang L, Tu B, Zhou S. Chin. J. Org. Chem. 2018; 38: 672
  • 70 Wang P, Liu Y, Zhang Y.-L, Da C.-D. Chirality 2017; 29: 443
    • 72a Duthaler RO, Hafner A. Chem. Rev. 1992; 92: 807
    • 72b Pellissier H. Tetrahedron 2015; 71: 2487
  • 73 Zhou S, Chen C.-R, Gau H.-M. Org. Lett. 2010; 12: 48
  • 74 Wu K.-H, Zhou S, Chen C.-A, Yang M.-C, Chiang R.-T, Chen C.-R, Gau H.-M. Chem. Commun. 2011; 47: 11668
  • 75 Chang S.-J, Zhou S, Gau H.-M. RSC Adv. 2015; 5: 9368
  • 76 Shu C.-C, Zhou S, Gau H.-M. RSC Adv. 2015; 5: 98391
  • 78 Sato I, Toyota Y, Asakura N. Eur. J. Org. Chem. 2007; 2608
  • 79 Andrade FC. D, Pugnal LV. B. L, Betim HL. I, Vani JF, Zukerman-Schpector J, Schwab RS. Eur. J. Org. Chem. 2018; 5467
  • 80 Ortiz P, del Hoyo AM, Harutyunyan SR. Eur. J. Org. Chem. 2015; 72