J Pediatr Genet 2020; 09(04): 252-257
DOI: 10.1055/s-0039-3401028
Case Report
Georg Thieme Verlag KG Stuttgart · New York

GRIN2A-Related Severe Epileptic Encephalopathy Treated with Memantine: An Example of Precision Medicine

Ali Mir
1   Department of Pediatric Neurology, Neuroscience Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia
,
Mohammed Qahtani
1   Department of Pediatric Neurology, Neuroscience Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia
,
2   Neuroscience Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia
3   Berenson-Allen Center for Non-invasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States
› Author Affiliations
Further Information

Publication History

15 May 2019

04 November 2019

Publication Date:
24 December 2019 (online)

Abstract

Epileptic spasm (ES) is one of the seizure types which is difficult to treat. Next-generation sequencing has facilitated rapid gene discovery that is linked to ES and GRIN2A being one of them. Genotype-driven precision medicine is on the horizon and is a targeted treatment approach toward the precise molecular cause of the disease. GRIN2A gene encodes for a subunit of N-methyl-D-aspartate (NMDA) receptor and it has been suggested from in vitro studies and few case reports that memantine, a NMDA receptor antagonist, was shown to reduce seizures in patients with GRIN2A mutations. Here, we describe a patient with a novel GRIN2A mutation and severe drug-resistant ES who became seizure free with memantine.

 
  • References

  • 1 Proposal for revised classification of epilepsies and epileptic syndromes. Commission on Classification and Terminology of the International League Against Epilepsy. Epilepsia 1989; 30: 389-399
  • 2 Cowan LD, Hudson LS. The epidemiology and natural history of infantile spasms. J Child Neurol 1991; 6 (04) 355-364
  • 3 Paciorkowski A, Thio L, Dobyns W. Genetic and biologic classification of infantile spasms. Pediatr Neurol 2011; 45 (06) 355-367
  • 4 Pirmohamed M. Personalized pharmacogenomics: predicting efficacy and adverse drug reactions. Annu Rev Genomics Hum Genet 2014; 15: 349-370
  • 5 Valdes Jr R, Yin DT. Fundamentals of pharmacogenetics in personalized, precision medicine. Clin Lab Med 2016; 36 (03) 447-459
  • 6 Endele S, Rosenberger G, Geider K. , et al. Mutations in GRIN2A and GRIN2B encoding regulatory subunits of NMDA receptors cause variable neurodevelopmental phenotypes. Nat Genet 2010; 42: 1021-1026
  • 7 Marwick K, Skehel P, Hardingham G, Wyllie D. Effect of a GRIN2A de novo mutation associated with epilepsy and intellectual disability on NMDA receptor currents and Mg(2+) block in cultured primary cortical neurons. Lancet 2015; 26 (385) (Suppl. 01) S65
  • 8 Myers KA, Scheffer IE. GRIN2A-related speech disorders and epilepsy. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K. et al, eds. Gene Reviews((R)). Seattle, WA: University of Washington; 1993
  • 9 Lemke JR, Lal D, Reinthaler EM. , et al. Mutations in GRIN2A cause idiopathic focal epilepsy with Rolandic spikes. Nat Genet 2013; 45 (09) 1067-1072
  • 10 Stefanatos G. Changing perspectives on Landau-Kleffner syndrome. Clin Neuropsychol 2011; 25 (06) 963-988
  • 11 Carvill GL, Regan BM, Yendle SC. , et al. GRIN2A mutations cause epilepsy-aphasia spectrum disorders. Nat Genet 2013; 45 (09) 1073-1076
  • 12 Lattanzi S, Brigo F, Trinka E. , et al. Efficacy and safety of cannabidiol in epilepsy: a systematic review and meta-analysis. Drugs 2018; 78 (17) 1791-1804
  • 13 Lattanzi S, Brigo F, Grillo E. , et al. Adjunctive eslicarbazepine acetate in pediatric patients with focal epilepsy: a systematic review and meta-analysis. CNS Drugs 2018; 32 (03) 189-196
  • 14 Hsu W, Sing C, He Y, Worsley A, Wong I, Chan E. Systematic review and meta-analysis of the efficacy and safety of perampanel in the treatment of partial-onset epilepsy. CNS Drugs 2013; 27 (10) 817-827
  • 15 Lattanzi S, Cagnetti C, Foschi N, Provinciali L, Silvestrini M. Brivaracetam add-on for refractory focal epilepsy. Neurology 2016; 86 (14) 1344-1352
  • 16 Chen Z, Brodie MJ, Liew D, Kwan P. Treatment outcomes in patients with newly diagnosed epilepsy treated with established and new antiepileptic drugs: a 30-year longitudinal cohort study. JAMA Neurol 2018; 75 (03) 279-286
  • 17 Kalilani L, Sun X, Pelgrims B, Noack-Rink M, Villanueva V. The epidemiology of drug-resistant epilepsy: a systematic review and meta-analysis. Epilepsia 2018; 59 (12) 2179-2193
  • 18 Dale T, Downs J, Olson H, Bergin AM, Smith S, Leonard H. Cannabis for refractory epilepsy in children: a review focusing on CDKL5 deficiency disorder. Epilepsy Res 2019; 151: 31-39
  • 19 Balestrinia S, Sisodiyaa SM. Pharmacogenomics in epilepsy. Neurosci Lett 2018; 22 (667) 27-39
  • 20 Pong AW, Geary BR, Engelstad KM, Natarajan A, Yang H, De Vivo DC. Glucose transporter type I deficiency syndrome: epilepsy phenotypes and outcomes. Epilepsia 2012; 53 (09) 1503-1510
  • 21 Hunt Jr AD, Stokes Jr J, McCrory WW, Stroud HH. Pyridoxine dependency: report of a case of intractable convulsions in an infant controlled by pyridoxine. Pediatrics 1954; 13: 140-145
  • 22 Marsan E, Ishida S, Schramm A. , et al. Depdc5 knockout rat: a novel model of mTORopathy. Neurobiol Dis 2016; 89: 180-189
  • 23 Galanopoulou AS, Gorter JA, Cepeda C. Finding a better drug for epilepsy: the mTOR pathway as an antiepileptogenic target. Epilepsia 2012; 53 (07) 1119-1130
  • 24 Bianchi MC, Tosetti M, Fornai F. , et al. Reversible brain creatine deficiency in two sisters with normal blood creatine level. Ann Neurol 2000; 47: 511-513
  • 25 Salomons GS, van Dooren SJ, Verhoeven NM. , et al. X-linked creatine-transporter gene (SLC6A8) defect: a new creatine-deficiency syndrome. Am J Hum Genet 2001; 68: 1497-1500
  • 26 Ali M, Mohammed C, Hani A, Rami A, Raidah A, Yousef H. Epilepsy in patients with EAST syndrome caused by mutation in the KCNJ10. Brain Dev 2019; 41 (08) 706-715
  • 27 Kato M, Yamagata T, Kubota M. , et al. Clinical spectrum of early onset epileptic encephalopathies caused by KCNQ2 mutation. Epilepsia 2013; 54 (07) 1282-1287
  • 28 Weckhuysen S, Ivanovic V, Hendrickx R. , et al. Extending the KCNQ2 encephalopathy spectrum: clinical and neuroimaging findings in 17 patients. Neurology 2013; 81 (19) 1697-1703
  • 29 Numis AL, Angriman M, Sullivan JE. , et al. KCNQ2 encephalopathy: delineation of the electroclinical phenotype and treatment response. Neurology 2014; 82 (04) 368-370
  • 30 Schenzer A, Friedrich T, Pusch M. , et al. Molecular determinants of KCNQ (Kv7) K+ channel sensitivity to the anticonvulsant retigabine. J Neurosci 2005; 25 (20) 5051-5060
  • 31 Bearden D, Strong A, Ehnot J, DiGiovine M, Dlugos D, Goldberg EM. Targeted treatment of migrating partial seizures of infancy with quinidine. Ann Neurol 2014; 76 (03) 457-461
  • 32 Abdelnour E, Gallentine W, McDonald M, Sachdev M, Jiang YH, Mikati MA. Does age affect response to quinidine in patients with KCNT1 mutations? Report of three new cases and review of the literature. Seizure 2018; 55: 1-3
  • 33 Mills PB, Camuzeaux SS, Footitt EJ. , et al. Epilepsy due to PNPO mutations: genotype, environment and treatment affect presentation and outcome. Brain 2014; 137 (Pt 5): 1350-1360
  • 34 Paemka L, Mahajan VB, Ehaideb SN. , et al. Seizures are regulated by ubiquitin-specific peptidase 9 X-linked (USP9X), a De-Ubiquitinase. PLoS Genet 2015; 11 (03) e1005022
  • 35 Chiron C, Marchand MC, Tran A. , et al. Stiripentol in severe myoclonic epilepsy in infancy: a randomised placebo-controlled syndrome-dedicated trial. STICLO study group. Lancet 2000; 356 (9242): 1638-1642
  • 36 Thanh TN, Chiron C, Dellatolas G. , et al. Long-term efficacy and tolerance of stiripentol in severe myoclonic epilepsy of infancy (Dravet's syndrome)]. Arch Pediatr 2002; 9 (11) 1120-1127
  • 37 Wirrell EC, Laux L, Franz DN. , et al. Stiripentol in Dravet syndrome: results of a retrospective U.S. study. Epilepsia 2013; 54 (09) 1595-1604
  • 38 Brunklaus A, Ellis R, Reavey E, Forbes GH, Zuberi SM. Prognostic, clinical and demographic features in SCN1A mutation-positive Dravet syndrome. Brain 2012; 135: 2329-2336
  • 39 Nakamura K, Kato M, Osaka H. , et al. Clinical spectrum of SCN2A mutations expanding to Ohtahara syndrome. Neurology 2013; 81 (11) 992-998
  • 40 Howell KB, McMahon JM, Carvill GL. , et al. SCN2A encephalopathy: a major cause of epilepsy of infancy with migrating focal seizures. Neurology 2015; 85 (11) 958-966
  • 41 Kong W, Zhang Y, Gao Y. , et al. SCN8A mutations in Chinese children with early onset epilepsy and intellectual disability. Epilepsia 2015; 56 (03) 431-438
  • 42 Larsen J, Carvill GL, Gardella E. , et al; EuroEPINOMICS RES Consortium CRP. The phenotypic spectrum of SCN8A encephalopathy. Neurology 2015; 84 (05) 480-489
  • 43 Boerma RS, Braun KP, van den Broek MP. , et al. Remarkable phenytoin sensitivity in 4 children with SCN8A-related epilepsy: a molecular neuropharmacological approach. Neurotherapeutics 2016; 13 (01) 192-197
  • 44 Wagnon JL, Meisler MH. Recurrent and non-recurrent mutations of SCN8A in epileptic encephalopathy. Front Neurol 2015; 6: 104
  • 45 Vannucci SJ, Simpson IA. Developmental switch in brain nutrient transporter expression in the rat. Am J Physiol Endocrinol Metab 2003; 285 (05) E1127-E1134
  • 46 Alter AS, Engelstad K, Hinton VJ. , et al. Long-term clinical course of Glut1 deficiency syndrome. J Child Neurol 2015; 30 (02) 160-169
  • 47 Kass HR, Winesett SP, Bessone SK, Turner Z, Kossoff EH. Use of dietary therapies amongst patients with GLUT1 deficiency syndrome. Seizure 2016; 35: 83-87
  • 48 Krueger DA, Wilfong AA, Holland-Bouley K. , et al. Everolimus treatment of refractory epilepsy in tuberous sclerosis complex. Ann Neurol 2013; 74 (05) 679-687
  • 49 French JA, Lawson JA, Yapici Z. , et al. Adjunctive everolimus therapy for treatment-resistant focal-onset seizures associated with tuberous sclerosis (EXIST-3): a phase 3, randomised, double-blind, placebo-controlled study. Lancet 2016; 388 (10056): 2153-2163
  • 50 Depondt C, Godard P, Espel RS. , et al. A candidate gene study of antiepileptic drug tolerability and efficacy identifies an association of CYP2C9 variants with phenytoin toxicity. Eur J Neurol 2011; 18 (09) 1159-1164
  • 51 Kosaki K, Tamura K, Sato R, Samejima H, Tanigawara Y, Takahashi T. A major influence of CYP2C19 genotype on the steady-state concentration of N-desmethylclobazam. Brain Dev 2004; 26 (08) 530-534
  • 52 Chung W-H, Hung S-I, Hong H-S. , et al. Medical genetics: a marker for Stevens–Johnson syndrome. Nature 2004; 428: 486
  • 53 Ozeki T, Mushiroda T, Yowang A. , et al. Genome-wide association study identifies HLA-A*3101 allele as a genetic risk factor for carbamazepine-induced cutaneous adverse drug reactions in Japanese population. Hum Mol Genet 2011; 20: 1034-1041
  • 54 McCormack M, Alfirevic A, Bourgeois S. , et al. HLA-A*3101 and carbamazepine-induced hypersensitivity reactions in Europeans. N Engl J Med 2011; 364: 1134-1143
  • 55 Stewart JD, Horvath R, Baruffini E. , et al. Polymerase γ gene POLG determines the risk of sodium valproate-induced liver toxicity. Hepatology 2010; 52 (05) 1791-1796
  • 56 Pierson TM, Yuan H, Marsh ED. , et al; PhD for the NISC Comparative Sequencing Program. GRIN2A mutation and early-onset epileptic encephalopathy: personalized therapy with memantine. Ann Clin Transl Neurol 2014; 1 (03) 190-198
  • 57 Johnson JW, Kotermanski SE. Mechanism of action of memantine. Curr Opin Pharmacol 2006; 6 (01) 61-67
  • 58 Memantine US. . Food and Drug Administration website. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2003/21-487_Namenda_Prntlbl.pdf
  • 59 Cartegni L, Chew SL, Krainer AR. Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet 2002; 3 (04) 285-298
  • 60 Drögemüller C, Reichart U, Seuberlich T. , et al. An unusual splice defect in the mitofusin 2 gene (MFN2) is associated with degenerative axonopathy in Tyrolean Grey cattle. PLoS One 2011; 6 (04) e18931
  • 61 Buske OJ, Manickaraj A, Mital S, Ray PN, Brudno M. Identification of deleterious synonymous variants in human genomes. Bioinformatics 2015; 31 (05) 799
  • 62 Carlini DB, Stephan W. In vivo introduction of unpreferred synonymous codons into the Drosophila Adh gene results in reduced levels of ADH protein. Genetics 2003; 163 (01) 239-243
  • 63 Carlini DB. Experimental reduction of codon bias in the Drosophila alcohol dehydrogenase gene results in decreased ethanol tolerance of adult flies. J Evol Biol 2004; 17 (04) 779-785
  • 64 Buske OJ, Manickaraj A, Mital S, Ray PN, Brudno M. Identification of deleterious synonymous variants in human genomes. Bioinformatics 2013; 29 (15) 1843-1850
  • 65 Reif PS, Tsai MH, Helbig I, Rosenow F, Klein KM. Precision medicine in genetic epilepsies: break of dawn?. Expert Rev Neurother 2017; 17 (04) 81-392
  • 66 Strehlow V, Heyne HO, Vlaskamp DRM. , et al. GRIN2A-related disorders: genotype and functional consequence predict phenotype. Brain 2019; 142 (01) 80-92