RSS-Feed abonnieren
DOI: 10.1055/s-0030-1259069
Effects of a Flexible Alkyl Chain on an Imidazole Ligand for Copper-Catalyzed Mannich Reactions of Terminal Alkynes
Publikationsverlauf
Publikationsdatum:
24. November 2010 (online)

Abstract
Copper-catalyzed Mannich reactions of terminal alkynes and secondary amines with aqueous formaldehyde can be accelerated by the use of a catalytic amount of an imidazole ligand carrying a long alkyl chain. The alkyl chain shows an efficient steric effect and helps the reaction. This imidazole ligand is efficient for various substrates, including even bulky alkynes.
Key words
alkyl chain - imidazole - steric effect - copper - Mannich reaction
- 1a
Israelachvili JN.Mitchell DJ.Ninham BW. J. Chem. Soc., Faraday Trans. 2 1976, 72: 1525Reference Ris Wihthout Link - 1b
Holbrey JD.Seddon KR. J. Chem. Soc., Dalton Trans. 1999, 2133Reference Ris Wihthout Link - 2
Asano K.Matsubara S. Org. Lett. 2010, 12: 4988 - 3
Malcolmson SJ.Meek SJ.Sattely ES.Schrock RR.Hoveyda AH. Nature (London) 2008, 456: 933Reference Ris Wihthout Link - 4a
Asano K.Matsubara S. Org. Lett. 2009, 11: 1757Reference Ris Wihthout Link - 4b
Asano K.Matsubara S. Synlett 2009, 35Reference Ris Wihthout Link - 4c
Asano K.Matsubara S. Synthesis 2009, 3219Reference Ris Wihthout Link - 4d
Güntensperger M.Zuberbühler AD. Helv. Chim. Acta 1977, 60: 2584Reference Ris Wihthout Link - 4e
Asano K.Matsubara S. Heterocycles 2010, 80: 989Reference Ris Wihthout Link - Copper(I)-imidazole systems have been well studied and shown to form a stable complex with an affinity for π-acceptor compounds, see:
- 5a
Kitagawa S.Munakata M. Bull. Chem. Soc. Jpn. 1986, 59: 2743Reference Ris Wihthout Link - 5b
Kitagawa S.Munakata M. Bull. Chem. Soc. Jpn. 1986, 59: 2751Reference Ris Wihthout Link - 5c
Gaykema WPJ.Hol WGJ.Vereijken JM.Soeter NM.Bak HJ.Beintema JJ. Nature (London) 1984, 309: 23Reference Ris Wihthout Link - 5d
Linzen B.Soeter NM.Riggs AF.Schneider H.-J.Schartau W.Moore MD.Yokota E.Behrens PQ.Nakashima H.Takagi T.Nemoto T.Vereijken JM.Bak HJ.Beintema JJ.Volbeda A.Gaykema WPJ.Hol WGJ. Science 1985, 229: 519Reference Ris Wihthout Link - 6a
Hayashi Y.Aratake S.Okano T.Takahashi J.Sumiya T.Shoji M. Angew. Chem. Int. Ed. 2006, 45: 5527Reference Ris Wihthout Link - 6b
Mase N.Nakai Y.Ohara N.Yoda H.Takabe K.Tanaka F.Barbas CF. J. Am. Chem. Soc. 2006, 128: 734Reference Ris Wihthout Link - 6c
Manabe K.Sun X.-M.Kobayashi S. J. Am. Chem. Soc. 2001, 123: 10101Reference Ris Wihthout Link - 7a
Mannich C.Chang FT. Ber. Dtsch. Chem. Ges. 1933, 66: 418Reference Ris Wihthout Link - 7b
Tramontini M. Synthesis 1973, 703Reference Ris Wihthout Link - 7c
Tramontini M.Angiolini L. Tetrahedron 1990, 46: 1791Reference Ris Wihthout Link - 8a
Karlén B.Lindeke B.Lindgren S.Svensson K.-G.Dahlbom R.Jenden DJ.Giering JE. J. Med. Chem. 1970, 13: 651Reference Ris Wihthout Link - 8b
Simon DZ.Salvador RL.Champagne G. J. Med. Chem. 1970, 13: 1249Reference Ris Wihthout Link - 8c
Adams TC.Dupont AC.Carter JP.Kachur JF.Guzewska ME.Rzeszotarski WJ.Farmer SG.Noronha-Blob L.Kaiser C. J. Med. Chem. 1991, 34: 1585Reference Ris Wihthout Link - 8d
Nilsson BM.Vargas HM.Ringdahl B.Hacksell U. J. Med. Chem. 1992, 35: 285Reference Ris Wihthout Link - 8e
Sanders KB.Thomas AJ.Pavia MR.Davis RE.Coughenour LL.Myers SL.Fisher S.Moos WH. Bioorg. Med. Chem. Lett. 1992, 2: 803Reference Ris Wihthout Link - 8f
Musso DL.Clarke MJ.Kelley JL.Boswell GE.Chen G. Org. Biomol. Chem. 2003, 1: 498Reference Ris Wihthout Link - 9a
Hattori K.Miyata M.Yamamoto H. J. Am. Chem. Soc. 1993, 115: 1151Reference Ris Wihthout Link - 9b
Boys ML. Tetrahedron Lett. 1998, 39: 3449Reference Ris Wihthout Link - 9c
Craig JC.Ekwuribe NN. Tetrahedron Lett. 1980, 21: 2587Reference Ris Wihthout Link - 9d
Nakamura H.Kamakura T.Ishikura M.Biellman J.-F. J. Am. Chem. Soc. 2004, 126: 5958Reference Ris Wihthout Link - 9e
Nakamura H.Ishikura M.Sugiishi T.Kamakura T.Biellman J.-F. Org. Biomol. Chem. 2008, 6: 1471Reference Ris Wihthout Link - 9f
Tabei J.Nomura R.Masuda T. Macromolecules 2002, 35: 5405Reference Ris Wihthout Link - 9g
Gao G.Sanda F.Masuda T. Macromolecules 2003, 36: 3932Reference Ris Wihthout Link - 9h
Crabbé P.Fillion H.André D.Luche J.-L. J. Chem. Soc., Chem. Commun. 1979, 859Reference Ris Wihthout Link - 9i
Kuang J.Ma S. J. Org. Chem. 2009, 74: 1763Reference Ris Wihthout Link - 9j
Kuang J.Ma S. J. Am. Chem. Soc. 2010, 132: 1786Reference Ris Wihthout Link - 9k
Ohno H.Ohta Y.Oishi S.Fujii N. Angew. Chem. Int. Ed. 2007, 46: 2295Reference Ris Wihthout Link - 9l
Suzuki Y.Ohta Y.Oishi S.Fujii N.Ohno H. J. Org. Chem. 2009, 74: 4246Reference Ris Wihthout Link - 9m
Ohta Y.Kubota Y.Watabe T.Chiba H.Oishi S.Fujii N.Ohno H. J. Org. Chem. 2009, 74: 6299Reference Ris Wihthout Link - 10a
Kabalka GW.Wang L.Pagni RM. Synlett 2001, 676Reference Ris Wihthout Link - 10b
Sharifi A.Farhangian H.Mohsenzadeh F.Naimi-Jamal MR. Monatsh. Chem. 2002, 133: 199Reference Ris Wihthout Link - 10c
Bieber LW.da Silva MF. Tetrahedron Lett. 2004, 45: 8281Reference Ris Wihthout Link - 10d
Kabalka GW.Zhou L.-L.Wang L.Pagni RM. Tetrahedron 2006, 62: 857Reference Ris Wihthout Link - 10e
Sharifi A.Mirzaei M.Naimi-Jamal MR. J. Chem. Res. 2007, 129Reference Ris Wihthout Link - 11a
Wang M.Li P.Wang L. Eur. J. Org. Chem. 2008, 2255Reference Ris Wihthout Link - 11b
Li P.Wang L. Tetrahedron 2007, 63: 5455Reference Ris Wihthout Link - 12
Stephens RD.Castro CE. J. Org. Chem. 1963, 28: 3313Reference Ris Wihthout Link - 13a
Asano Y.Hara K.Ito H.Sawamura M. Org. Lett. 2007, 9: 3901Reference Ris Wihthout Link - 13b
Asano Y.Ito H.Hara K.Sawamura M. Organometallics 2008, 27: 5984Reference Ris Wihthout Link - 14a
Li C.-J.Chan T.-H. In Organic Reactions in Aqueous Media John Wiley and Sons; New York: 1997.Reference Ris Wihthout Link - 14b
Li C.-J. Acc. Chem. Res. 2010, 43: 581Reference Ris Wihthout Link - 14c
Chen L.Li C.-J. Adv. Synth. Catal. 2006, 348: 1459Reference Ris Wihthout Link - 15a
Kobayashi S. Chem. Lett. 1991, 2187Reference Ris Wihthout Link - 15b
Kobayashi S.Hachiya I. J. Org. Chem. 1994, 59: 3590Reference Ris Wihthout Link - 17
Dureen MA.Stephan DW. J. Am. Chem. Soc. 2009, 131: 8396
References and Notes
Similar investigations corresponding to Table [³] were also performed with 4c and 4d, which carry alkyl chains of other lengths; also in those cases, a drastic acceleration such as occurred in the case of 4e was not observed.
18
General Procedure
for Mannich Reactions of Terminal Alkynes and Secondary Amines with
Formaldehyde
To a 5 mL vial were added sequentially
terminal alkyne 1 (1.0 mmol), secondary
amine 2 (1.0 mmol), formaldehyde (37% aq
solution, 1.2 mmol), 1-hexadecylimidazole (4e, 0.01
mmol), and CuI (0.005 mmol, 1.0 mg). The mixture was stirred in
an oil bath kept at 25 ˚C for 1.5 h. The mixture was
diluted with EtOAc, dried (anhyd Na2SO4),
and concentrated in vacuo. Purification by flash column chromatography
(silica gel, hexane-EtOAc) gave the corresponding propargylamine 3.
1-(3-Phenylprop-2-yn-1-yl)piperidine
(3aa)
CAS [2568-57-2]. Orange oil. ¹H
NMR (500 MHz, CDCl3): δ = 7.43 (m,
2 H), 7.30-7.27 (m, 3 H), 3.48 (s, 2 H), 2.57 (br s, 4
H), 1.64 (tt, J = 5.5,
6.0 Hz, 4 H), 1.45 (br s, 2 H). ¹³C NMR
(125,7 MHz, CDCl3): δ = 131.7, 128.2,
127.9, 123.3, 85.1, 84.9, 53.5, 48.5, 26.0, 23.9.
The reactions of dibutylamine and dicyclohexylamine could be performed to afford the corresponding products quantitatively even without any ligand.