RSS-Feed abonnieren
DOI: 10.1055/s-0030-1259521
Studies towards the Total Asymmetric Synthesis of the Pentacyclic Indole Alkaloid Arboflorine: Asymmetric Synthesis of a Key Intermediate
Publikationsverlauf
Publikationsdatum:
27. Januar 2011 (online)

Abstract
The synthesis of a plausible key intermediate for a biomimetic asymmetric synthesis of indole alkaloid arboflorine is described. The method featured the use of Ellman’s sulfinamide chemistry for the establishment of the first chiral center, and the Polonovski-Potier reaction for the formation of the α-aminonitrile moiety.
Key words
indole alkaloids - biogenetic pathway - intermediate - Polonovski-Potier reaction - Ellman’s sulfinamide
- Supporting Information for this article is available online:
- Supporting Information (PDF)
- For some recent reviews, see:
- 1a
Kam T.-S.Lim K.-H. Alkaloids of Kopsia, In The Alkaloids: Chemistry and Biology Vol. 66:Cordell GA. Academic Press; Amsterdam: 2008. p.1-111Reference Ris Wihthout Link - 1b
Ishikura M.Yamada K.Abe T. Nat. Prod. Rep. 2010, 27: 1630Reference Ris Wihthout Link - 1c
Li S.-M. Nat. Prod. Rep. 2010, 27: 57Reference Ris Wihthout Link - 2
Lim K.-H.Kam T.-S. Org. Lett. 2006, 8: 1733 - 3
Huang P.-Q. Synlett 2006, 1133 - 4a
Xiao K.-J.Liu L.-X.Huang P.-Q. Tetrahedron: Asymmetry 2009, 20: 1181Reference Ris Wihthout Link - 4b
Lin G.-J.Huang P.-Q. Org. Biomol. Chem. 2009, 7: 4491Reference Ris Wihthout Link - 4c
Zheng X.Chen G.Ruan Y.-P.Huang P.-Q. Sci. China, Ser. B: Chem. 2009, 52: 1631Reference Ris Wihthout Link - 4d
Yang R.-F.Huang P.-Q. Chem. Eur. J. 2010, 16: 10319Reference Ris Wihthout Link - 4e
Xiao K.-J.Wang Y.Ye K.-Y.Huang P.-Q. Chem. Eur. J. 2010, 16: 12792Reference Ris Wihthout Link - 5a
Liu L.-X.Xiao K.-J.Huang P.-Q. Tetrahedron 2009, 52: 3834Reference Ris Wihthout Link - 5b
Fu R.Du Y.Li Z.-Y.Xu W.-X.Huang P.-Q. Tetrahedron 2009, 65: 9765Reference Ris Wihthout Link - 5c
Fu R.Chen J.Guo L.-C.Ruan Y.-P.Huang P.-Q. Org. Lett. 2009, 11: 5242Reference Ris Wihthout Link - 5d
Fu R.Ye J.-L.Dai X.-J.Ruan Y.-P.Huang P.-Q. J. Org. Chem. 2010, 75: 4230Reference Ris Wihthout Link - 5e
Zheng X.Zhu W.-F.Huang P.-Q. Sci. China, Ser. B: Chem. 2010, 53: 1914Reference Ris Wihthout Link - 6a
Li Z.-P.Li C.-J. Eur. J. Org. Chem. 2005, 3173Reference Ris Wihthout Link - 6b
Baslé O.Li C.-J. Green Chem. 2007, 9: 1047Reference Ris Wihthout Link - 6c
Li C.-J. Acc. Chem. Res. 2009, 42: 335Reference Ris Wihthout Link - 7a
Grierson D. Org. React. (N.Y.) 1990, 39: 85Reference Ris Wihthout Link - 7b
Polonovski M. Bull. Soc. Chim. Belg. 1930, 39: 1Reference Ris Wihthout Link - 7c
Potier P. Annu. Proc. Phytochem. Soc. Eur. 1980, 17: 159Reference Ris Wihthout Link - 8a
Ellman JA.Owens TD.Tang TP. Acc. Chem. Res. 2002, 35: 984Reference Ris Wihthout Link - 8b
Ellman JA. Pure Appl. Chem. 2003, 75: 39Reference Ris Wihthout Link - 8c
Senanayake CH.Krishnamurthy D.Lu Z.-H.Han Z.Gallon E. Aldrichimica Acta 2005, 38: 93Reference Ris Wihthout Link - 8d
Daniel M.Stockman RA. Tetrahedron 2006, 62: 8869Reference Ris Wihthout Link - 9
Chelucci G.Baldino S.Chessa S.Pinna GA.Soccolini F. Tetrahedron: Asymmetry 2006, 17: 3163 - 10a
Liu G.Cogan DA.Owens TD.Tang TP.Ellman JA. J. Org. Chem. 1999, 64: 1278Reference Ris Wihthout Link - 10b
Cogan DA.Ellman JA. J. Am. Chem. Soc. 1999, 121: 268Reference Ris Wihthout Link - 10c
Davis FA.Zhang Y.Andemichael Y.Fang T.Fanelli DL.Zhang H. J. Org. Chem. 1999, 64: 1403Reference Ris Wihthout Link - 11a
Kuehne ME.Xu F. J. Org. Chem. 1997, 62: 7950Reference Ris Wihthout Link - 11b
Schkeryantz JM.Woo JCG.Siliphaivanh P.Depew KM.Danishefsky SJ. J. Am. Chem. Soc. 1999, 121: 11964Reference Ris Wihthout Link - 12 For an alternative method, see:
Johansen MB.Kerr MA. Org. Lett. 2010, 12: 4956 - 13
Fry EM.Beisler JA. J. Org. Chem. 1970, 35: 2809 - 14
Passarella D.Martinelli M.Llor N.Amat M.Bosch J. Tetrahedron 1999, 55: 14995 - 15a
Murahashi SI.Komiya N.Terai H. Angew. Chem. Int. Ed. 2005, 44: 6931Reference Ris Wihthout Link - 15b
Murahashi SI.Nakae T.Terai H.Komiya N. J. Am. Chem. Soc. 2008, 130: 11005Reference Ris Wihthout Link - 16a
Grierson DS.Harris M.Husson H.-P. J. Am. Chem. Soc. 1980, 102: 1064Reference Ris Wihthout Link - 16b
Grierson DS.Vuilhorgne M.Husson H.-P. J. Org. Chem. 1982, 47: 4439Reference Ris Wihthout Link - 16c
Sundberg RJ.Grierson DS.Husson H.-P. J. Org. Chem. 1984, 49: 2400Reference Ris Wihthout Link - 17
Bonjoch J.Solé D.García-Rubio S.Bosch J. J. Am. Chem. Soc. 1997, 119: 7230Reference Ris Wihthout Link - 19
Agami C.Couty F.Evano G. Org. Lett. 2000, 2: 2085
References and Notes
All new compounds gave satisfactory
analytical and spectral data.
Experimental
Procedure for the Synthesis of the Key Intermediate 28: A solution
of MCPBA (72%, 84 mg, 0.35 mmol) in CH2Cl2 (1
mL) was added dropwise to a solution of compound 25 (138
mg, 0.25 mmol) in CH2Cl2 (1.5 mL) at 0 ˚C.
After stirring at 0 ˚C for 1 h, K2CO3 (70
mg, 0.5 mmol) was added. After stirring for an additional 1 h at
0 ˚C, the mixture was filtered through celite. The residue
was purified by flash column chromatography on silica gel (R
f
0.18, eluent:
CH2Cl2-MeOH, 15:1) to give N-oxide 26 (140
mg, 98%), which was dissolved in anhyd CH2Cl2 (2.0
mL) and cooled to 0 ˚C. TFAA (0.07 mL, 0.5 mmol) was added.
After being stirred for 30 min at 0 ˚C, an aqueous solution
(0.5 mL) of KCN (65 mg, 1.0 mmol) was added, and the solution was
buffered to pH 4 by addition of AcOH and NaOAc. After stirring for
1 h at 0 ˚C, the mixture was basified with K2CO3 and
extracted with CH2Cl2 (3 × 3 mL).
The combined extracts were successively washed with H2O
(2 mL) and brine (1 mL), dried over anhyd Na2SO4,
filtered and concentrated in vacuo. The residue was purified by
flash column chromatography on neutral Al2O3 (R
f
= 0.4,
eluent: EtOAc-n-hexane, 1:4)
to give compound 28 (108 mg, 74% from 25) as a white amorphous solid. IR (film):
3370, 2978, 2934, 2216 (w, CN), 1730 (s), 1511, 1458, 1392, 1367,
1328, 1248, 1169, 1133 cm-¹. ¹H
NMR (400 MHz, CDCl3; diastereomeric mixture and rotamers): δ = 1.25
(m, 3 H, CH2CH
3),
1.33 (m, 3 H, CHCH
3), 1.44 [m,
9 H, C(CH3)3], 1.65 [s,
9 H, C(CH3)3], 2.08-2.18
(m, 1 H, C=CHCH
2), 2.26-2.44
(m, 1 H, C=CHCH
2),
2.53-2.63 (m, 1 H, C=CHCH2CH
2), 2.70-2.95 (m,
5 H, C=CHCH2CH
2, ArCH
2CH
2N),
4.03 (s, 2 H, CH2CO2), 4.16 (m, 2 H, CH
2CH3), 4.27 (s,
1 H, CHCN), 4.22-4.38 (m, 1 H, CHCH3), 4.57
(br s, 1 H, NH), 5.86, 5.89 (br s, 1 H, C=CH), 7.24 (t,
J = 7.3 Hz, 1 H, ArH), 7.29 (t, J = 7.3 Hz, 1 H, ArH), 7.53 (d, J = 7.8 Hz, 1 H, ArH), 8.09 (d, J = 7.8 Hz, 1 H, ArH). ¹³C NMR (100 MHz, CDCl3; diastereomeric mixture and rotamers): d = 14.2, 22.4, 22.5, 25.1, 25.2, 28.1, 28.25, 28.29, 28.33, 28.7, 29.6, 33.17, 33.2, 45.6, 45.65, 47.5, 52.4, 55.2, 55.3, 60.8, 79.8, 80.1, 84.0, 115.7, 115.9, 116.1, 118.0, 118.1, 118.2, 122.5, 124.2, 124.449, 124.458, 129.2, 129.7, 129.8, 134.08, 134.14, 135.8, 150.4, 155.3, 170.12, 170.18. HRMS: m/z [M + Na+] calcd for C32H44N4NaO6: 603.3159; found: 603.3153.