Synlett 2011(5): 594-614  
DOI: 10.1055/s-0030-1259693
ACCOUNT
© Georg Thieme Verlag Stuttgart ˙ New York

Construction of Diverse Ring Systems Based on Allene-Multiple Bond Cycloaddition

Fuyuhiko Inagaki, Shinji Kitagaki, Chisato Mukai*
Division of Pharmaceutical Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
Fax: +81(76)2344410; e-Mail: cmukai@kenroku.kanazawa-u.ac.jp;
Weitere Informationen

Publikationsverlauf

Received 10 November 2010
Publikationsdatum:
25. Februar 2011 (online)

Preview

Abstract

Cycloaddition and cycloisomerization based on the interaction between an allene and another multiple bond, such as an alkyne, alkene, or additional allene, enabled us to build a variety of useful cyclic structures. This account describes our research on allene cycloaddition and cycloisomerization, categorizing the reactions by the proper reaction mode and the cyclic framework of the product.

1 Introduction

2 Construction of Bicyclo[m.3.0] Skeletons via Carbonylative [2+2+1] Cycloaddition

2.1 From Allene-Ynes and Aza Analogues

2.2 From Allene-Enes

2.3 From Bis-allenes

3 Construction of Bicyclo[m.2.0] Skeletons via [2+2] Cyclo­addition

3.1 From Allene-Ynes

3.2 From Bis-allenes

4 Construction of Bicyclo[4.4.0] Skeletons via 6π-Electrocyclization/[4+2] Cycloaddition

5 Construction of Monocyclic Polyenes via Cycloisomerization

5.1 From Allene-Ynes

5.2 From Allene-Enes

5.3 From Bis-allenes

6 Construction of Bicyclo[5.m.0] Skeletons via [5+2] Cyclo­addition

7 Conclusions and Outlook

    References

  • 1a Landor SR. The Chemistry of the Allenes   Academic; London: 1982. 
  • 1b Schuster HF. Coppola GM. Allenes in Organic Synthesis   Wiley; New York: 1984. 
  • 1c Pasto DJ. Tetrahedron  1984,  40:  2805 
  • 1d Zimmer R. Dinesh CU. Nandanan E. Khan FA. Chem. Rev.  2000,  100:  3067 
  • 1e Hashmi ASK. Angew. Chem. Int. Ed.  2000,  39:  3590 
  • 1f Hoffmann-Röder A. Krause N. Angew. Chem. Int. Ed.  2004,  43:  1196 
  • 1g Krause N. Hashmi ASK. Modern Allene Chemistry   Wiley-VCH; Weinheim: 2004. 
  • 1h Ma S. Chem. Rev.  2005,  105:  2829 
  • 1i Brummond KM. DeForrest JE. Synthesis  2007,  795 
  • 2a Khand IU. Knox GR. Pauson PL. Watts WE.
    J. Chem. Soc. D  1971,  36a 
  • 2b Khand IU. Knox GR. Pauson PL. Watts WE. Foreman MI. J. Chem. Soc., Perkin Trans. 1  1973,  977 
  • For selected reviews, see:
  • 3a Geis O. Schmalz H.-G. Angew. Chem. Int. Ed.  1998,  37:  911 
  • 3b Brummond KM. Kent JL. Tetrahedron  2000,  56:  3263 
  • 3c Gibson SE. Stevenazzi A. Angew. Chem. Int. Ed.  2003,  42:  1800 
  • 3d Blanco-Urgoiti J. Añorbe L. Pérez-Serrano L. Domínguez G. Pérez-Castells J. Chem. Soc. Rev.  2004,  33:  32 
  • 3e Boñaga LVR. Krafft ME. Tetrahedron  2004,  60:  9795 
  • 3f Shibata T. Adv. Synth. Catal.  2006,  348:  2328 
  • For the construction of seven-membered and larger rings via the Pauson-Khand reaction of enynes with aromatic rings as a template, see:
  • 4a Pérez-Serrano L. Casarrubios L. Domínguez G. Pérez-Castells J. Chem. Commun.  2001,  2602 
  • 4b Krafft ME. Fu Z. Boñaga LVR. Tetrahedron Lett.  2001,  42:  1427 
  • 4c Lovely CJ. Seshadri H. Wayland BR. Cordes AW. Org. Lett.  2001,  3:  2607 
  • 5a Mukai C. Uchiyama M. Sakamoto S. Hanaoka M. Tetrahedron Lett.  1995,  36:  5761 
  • 5b Mukai C. Kim JS. Uchiyama M. Sakamoto S. Hanaoka M. J. Chem. Soc., Perkin Trans. 1  1998,  2903 
  • 5c Mukai C. Kim JS. Uchiyama M. Hanaoka M. Tetrahedron Lett.  1998,  39:  7909 
  • 5d Mukai C. Kim JS. Sonobe H. Hanaoka M. J. Org. Chem.  1999,  64:  6822 
  • 5e Mukai C. Sonobe H. Kim JS. Hanaoka M. J. Org. Chem.  2000,  65:  6654 
  • Intramolecular allenic [2+2+1] cycloaddition was first reported by Narasaka and Brummond and their co-workers, see:
  • 6a Narasaka K. Shibata T. Chem. Lett.  1994,  315 
  • 6b Shibata T. Koga Y. Narasaka K. Bull. Chem. Soc. Jpn.  1995,  68:  911 
  • 6c Kent JL. Wan H. Brummond KM. Tetrahedron Lett.  1995,  36:  2407 
  • 6d Brummond KM. Wan H. Kent JL. J. Org. Chem.  1998,  63:  6535 
  • For reviews of allenic [2+2+1] cycloadditions, see:
  • 7a Brummond KM. An Allenic [2+2+1] Cycloaddition, In Advances in Cycloaddition   Vol. 6:  Harmata M. JAI; Stamford: 1999.  p.211-237  
  • 7b Alcaide B. Almendros P. Eur. J. Org. Chem.  2004,  3377 
  • 8 Ahmar M. Locatelli C. Colombier D. Cazes B. Tetrahedron Lett.  1997,  38:  5281 
  • 9a Mukai C. Yamashita H. Hanaoka M. Org. Lett.  2001,  3:  3385 
  • 9b Mukai C. Ohta M. Yamashita H. Kitagaki S. J. Org. Chem.  2004,  69:  6867 
  • 10 Kitagaki S. Inagaki F. Mukai C. J. Synth. Org. Chem., Jpn.  2009,  67:  618 
  • 11 Horner L. Binder V. Justus Liebigs Ann. Chem.  1972,  757:  33 
  • 12a Nájera C. Yus M. Tetrahedron  1999,  55:  10547 
  • 12b Simpkins NS. Sulphones in Organic Synthesis   Pergamon; Oxford: 1993. 
  • 13a Mukai C. Nomura I. Yamanishi K. Hanaoka M. Org. Lett.  2002,  4:  1755 
  • 13b Mukai C. Nomura I. Kitagaki S. J. Org. Chem.  2003,  68:  1376 
  • Rhodium(I)-catalyzed carbonylative [2+2+1] cycloaddition was first reported by Narasaka and co-workers and Jeong et al., see:
  • 14a Koga Y. Kobayashi T. Narasaka K. Chem. Lett.  1998,  249 
  • 14b Kobayashi T. Koga Y. Narasaka K. J. Organomet. Chem.  2001,  624:  73 
  • 14c Jeong N. Lee S. Sung BK. Organometallics  1998,  17:  3642 
  • 15 Sanger AR. J. Chem. Soc., Dalton Trans.  1977,  120 
  • 16 Brummond et al. independently developed the [RhCl(CO)2]2-catalyzed [2+2+1] cycloaddition of allene-ynes, see: Brummond KM. Chen H. Fisher KD. Kerekes AD. Rickards B. Sill PC. Geib SJ. Org. Lett.  2002,  4:  1931 
  • 17 Mukai C. Inagaki F. Yoshida T. Yoshitani K. Hara Y. Kitagaki S. J. Org. Chem.  2005,  70:  7159 
  • 18 Mukai C. Hirose T. Teramoto S. Kitagaki S. Tetrahedron  2005,  61:  10983 
  • 19 Inagaki F. Kawamura T. Mukai C. Tetrahedron  2007,  63:  5154 
  • 20 Bayden AS. Brummond KM. Jorden KD. Organometallics  2006,  25:  5204 
  • 21 Mukai C. Inagaki F. Yoshida T. Kitagaki S. Tetrahedron Lett.  2004,  45:  4117 
  • 22 Hirose T. Miyakoshi N. Mukai C. J. Org. Chem.  2008,  73:  1061 
  • 23 Aburano D. Inagaki F. Tomonaga S. Mukai C. J. Org. Chem.  2009,  74:  5590 
  • 24 Saito T. Shiotani M. Otani T. Hasaba S. Heterocycles  2003,  60:  1045 
  • 25 Tang Y. Deng L. Zhang Y. Dong G. Chen J. Yang Z. Org. Lett.  2005,  7:  593 
  • 26a Mukai C. Yoshida T. Sorimachi M. Odani A. Org. Lett.  2006,  8:  83 
  • 26b Aburano D. Yoshida T. Miyakoshi N. Mukai C. J. Org. Chem.  2007,  72:  6878 
  • 27 Saito T. Sugizaki K. Otani T. Suyama T. Org. Lett.  2007,  9:  1239 
  • 28 Negishi E. Choueiry D. Nguyen TB. Swanson DR. Suzuki N. Takahashi T. J. Am. Chem. Soc.  1994,  116:  9751 
  • 29a Wender PA. Croatt MP. Deschamps NM. J. Am. Chem. Soc.  2004,  126:  5948 
  • 29b

    In this paper, Wender et al. reported that several dienes failed to give the [2+2+1] cycloadducts under the optimized [RhCl(CO)2]2-catalyzed conditions.

  • 30 Makino T. Itoh K. J. Org. Chem.  2004,  69:  395 
  • 31 Inagaki F. Mukai C. Org. Lett.  2006,  8:  1217 
  • 32a Bolton GL. Hodges JC. Rubin JR. Tetrahedron  1997,  53:  6611 
  • 32b Ishizaki M. Satoh H. Hoshino O. Chem. Lett.  2002,  1040 
  • 32c Ishizaki M. Sato H. Hoshino O. Nishitani K. Hara H. Heterocycles  2004,  63:  827 
  • 33 Hayashi Y. Miyakoshi N. Kitagaki S. Mukai C. Org. Lett.  2008,  10:  2385 
  • 34a Inagaki F. Narita S. Hasegawa T. Kitagaki S. Mukai C. Angew. Chem. Int. Ed.  2009,  48:  2007 
  • 34b Kawamura T. Inagaki F. Narita S. Takahashi Y. Hirata S. Kitagaki S. Mukai C. Chem. Eur. J.  2010,  16:  5173 
  • 35 Chung and co-workers reported the cobalt/rhodium-nanoparticle-catalyzed [2+2+1] cycloaddition of 1,5-bis-allenes, see: Park JH. Kim E. Kim H.-M. Choi SY. Chung YK. Chem. Commun.  2008,  2388 
  • 36 Recently, Ma and co-workers reported the rhodium-catalyzed and molybdenum-mediated [2+2+1] cycloaddition of 1,5-bis-allenes in a review article, see: Chen G. Jiang X. Fu C. Ma S. Chem. Lett.  2010,  39:  78 
  • 37 Watanabe Y. Ueno Y. Araki T. Endo T. Okawara M. Tetrahedron Lett.  1986,  27:  215 
  • For other examples dealing with the desulfonylation of our products, see:
  • 38a Miyakoshi N. Ohgaki Y. Masui K. Mukai C. Heterocycles  2007,  74:  185 
  • 38b

    See also ref. 23

  • 39 Brummond KM. Chen D. Org. Lett.  2005,  7:  3473 
  • 40 Oh CH. Gupta AK. Park DI. Kim N. Chem. Commun.  2005,  5670 
  • 41 Mukai C. Hara Y. Miyashita Y. Inagaki F. J. Org. Chem.  2007,  72:  4454 
  • 42a Padwa A. Filipkowski MA. Meske M. Watterson SH. Ni Z. J. Am. Chem. Soc.  1993,  115:  3776 
  • 42b Padwa A. Meske M. Murphree SS. Watterson SH. Ni Z. J. Am. Chem. Soc.  1995,  117:  7071 
  • 42c Padwa A. Lipka H. Watterson SH. Murphree SS. J. Org. Chem.  2003,  68:  6238 
  • 43 Siebert MR. Osbourn JM. Brummond KM. Tantillo DJ. J. Am. Chem. Soc.  2010,  132:  11952 
  • For examples of the thermal [2+2] cycloaddition of bis-allenes, see:
  • 44a Aubert P. Princet B. Pornet J. Synth. Commun.  1997,  27:  2615 
  • 44b Shimizu T. Sakamaki K. Kamigata N. Tetrahedron Lett.  1997,  38:  8529 
  • 44c Jiang X. Cheng X. Ma S. Angew. Chem. Int. Ed.  2006,  45:  8009 
  • For palladium-catalyzed [2+2] cycloadditions of the two allenic internal double bonds of bis-allenes, see:
  • 44d Kang S.-K. Baik T.-G. Kulak AN. Ha Y.-H. Lim Y. Park J. J. Am. Chem. Soc.  2000,  122:  11529 
  • 44e Hong Y.-T. Yoon S.-K. Kang S.-K. Yu C.-M. Eur. J. Org. Chem.  2004,  4628 
  • 44f

    See also ref. 44c. For gold-catalyzed [2+2] cycloadditions of the two allenic internal double bonds of bis-allenes, see:

  • 44g Kim SM. Park JH. Kang YK. Chung YK. Angew. Chem. Int. Ed.  2009,  48:  4532 
  • For nickel-catalyzed intermolecular [2+2] cycloadditions of allenes, see:
  • 44h Saito S. Hirayama K. Kabuto C. Yamamoto Y. J. Am. Chem. Soc.  2000,  122:  10776 
  • 45a Tanaka K. Takamoto N. Tezuka Y. Kato M. Toda F. Tetrahedron  2001,  57:  3761 
  • 45b Toda F. Tanaka K. Sano I. Isozaki T. Angew. Chem. Int. Ed. Engl.  1994,  33:  1757 
  • 45c Sugimoto Y. Hanamoto T. Inanaga J. Appl. Organomet. Chem.  1995,  9:  369 
  • 45d Inanaga J. Sugimoto Y. Hanamoto T. Tetrahedron Lett.  1992,  33:  7035 
  • 45e Ezcurra JE. Moore HW. Tetrahedron Lett.  1993,  34:  6177 
  • 45f Braverman S. Duar Y. J. Am. Chem. Soc.  1990,  112:  5830 
  • 45g Höhn J. Weyerstahl P. Chem. Ber.  1983,  116:  808 
  • 45h Staab HA. Draeger B. Chem. Ber.  1972,  105:  2320 
  • 45i Bowes CM. Montecalvo DF. Sondheimer F. Tetrahedron Lett.  1973,  3181 
  • 45j Ben-Efraim DA. Sondheimer F. Tetrahedron Lett.  1963,  313 
  • 46 For the preparation of allenes via the [2,3]-sigmatropic rearrangement of propargyl phosphinites, see: Hashmi ASK. Synthesis of Allenes by Isomerization Reactions, In Modern Allene Chemistry   Vol. 1:  Krause N. Hashmi ASK. Wiley-VCH; Weinheim: 2004.  p.3-50  
  • The tandem formation and intramolecular [4+2] cycloaddition of 1-phosphinyl-1-vinylallenes, triggered by the [2,3]-sigmatropic rearrangement of the corresponding propargyl phosphinites, has been reported, see:
  • 47a Okamura WH. Curtin ML. Synlett  1990,  1 
  • 47b Curtin ML. Okamura WH. J. Org. Chem.  1990,  55:  5278 
  • 48a Kitagaki S. Okumura Y. Mukai C. Tetrahedron Lett.  2006,  47:  1849 
  • 48b Kitagaki S. Okumura Y. Mukai C. Tetrahedron  2006,  62:  10311 
  • 49 The production of 67 (X = PPh2, R = H) from 64a was described in a review article by Grissom et al.; however, no original manuscript dealing with the details of this reaction is available: Grissom JW. Gunawardena GU. Klingberg D. Huang D. Tetrahedron  1996,  52:  6453 
  • 50 Sonogashira K. Tohda Y. Hagihara N. Tetrahedron Lett.  1975,  4467 
  • 51 Kitagaki S. Katoh K. Ohdachi K. Takahashi Y. Shibata D. Mukai C. J. Org. Chem.  2006,  71:  6908 
  • 52 Kitagaki S. Ohdachi K. Katoh K. Mukai C. Org. Lett.  2006,  8:  95 
  • 53a Myers AG. Zheng B. J. Am. Chem. Soc.  1996,  118:  4492 
  • 53b Myers AG. Zheng B. Org. Synth.  1998,  76:  178 
  • 54 Hakuba H. Kitagaki S. Mukai C. Tetrahedron  2007,  63:  12639 
  • 55 Brown AC. Carpino LA. J. Org. Chem.  1985,  50:  1749 
  • 56 Movassaghi M. Ahmad OK. J. Org. Chem.  2007,  72:  1838 
  • For other examples of allene-yne cycloisomerizations, see:
  • 57a Brummond KM. Chen H. Sill P. You L. J. Am. Chem. Soc.  2002,  124:  15186 
  • 57b Brummond KM. Mitasev B. Org. Lett.  2004,  6:  2245 
  • 57c Shibata T. Takasue Y. Kadowaki S. Takagi K. Synlett  2003,  268 
  • 57d Jiang X. Ma S. J. Am. Chem. Soc.  2007,  129:  11600 
  • 58 Kinderman SS. van Maarseveen JH. Schoemaker HE. Hiemstra H. Rutjes FPJT. Org. Lett.  2001,  3:  2045 
  • 59 Mukai C. Itoh R. Tetrahedron Lett.  2006,  47:  3971 
  • For examples of allene-ene cycloisomerizations, see:
  • 60a Makino T. Itoh K. Tetrahedron Lett.  2003,  44:  6335 
  • 60b Brummond KM. Chen H. Mitasev B. Casarez AD. Org. Lett.  2004,  6:  2161 
  • 60c

    See also ref. 30

  • 61 Fürstner A. Langemann K. J. Am. Chem. Soc.  1997,  119:  9130 
  • For other examples of bis-allene cycloisomerizations, see:
  • 62a Ma S. Lu P. Lu L. Hou H. Wei J. He Q. Gu Z. Jiang X. Jin X. Angew. Chem. Int. Ed.  2005,  44:  5275 
  • 62b Lu P. Ma S. Org. Lett.  2007,  9:  5319 
  • 62c Ma S. Lu L. Chem. Asian J.  2007,  2:  199 
  • 62d Lu P. Ma S. Org. Lett.  2007,  9:  2095 
  • 63 For the metal-mediated synthesis of medium-sized rings, see: Yet L. Chem. Rev.  2000,  100:  2963 
  • For recent reviews, see:
  • 64a Carson CA. Kerr MA. Chem. Soc. Rev.  2009,  38:  3051 
  • 64b Rubin M. Rubina M. Gevorgyan V. Chem. Rev.  2007,  107:  3117 
  • 64c Yu M. Pagenkopf BL. Tetrahedron  2005,  61:  321 
  • 64d Rubina M. Gevorgyan V. Tetrahedron  2004,  60:  3129 
  • 64e Kulinkovich OG. Chem. Rev.  2003,  103:  2597 
  • 65a Wender PA. Takahashi H. Witulski B. J. Am. Chem. Soc.  1995,  117:  4720 
  • 65b Wender PA. Husfeld CO. Langkopf E. Love JA. Pleuss N. Tetrahedron  1998,  54:  7203 
  • 65c Wender PA. Sperandio D. J. Org. Chem.  1998,  63:  4164 
  • 65d Wender PA. Husfeld CO. Langkopf E. Love JA. J. Am. Chem. Soc.  1998,  120:  1940 
  • 65e Wender PA. Glorius F. Husfeld CO. Langkopf E. Love JA. J. Am. Chem. Soc.  1999,  121:  5348 
  • 65f Wender PA. Fuji M. Husfeld CO. Love JA. Org. Lett.  1999,  1:  137 
  • 65g Wender PA. Dyckman AJ. Husfeld CO. Kadereit D. Love JA. Rieck H. J. Am. Chem. Soc.  1999,  121:  10442 
  • 65h Wender PA. Zhang L. Org. Lett.  2000,  2:  2323 
  • 65i Wender PA. Bi FC. Brodney MA. Gosselin F. Org. Lett.  2001,  3:  2105 
  • 65j Wender PA. Williams TJ. Angew. Chem. Int. Ed.  2002,  41:  4550 
  • 65k Gómez FJ. Kamber NE. Deschamps NM. Cole AP. Wender PA. Waymouth RM. Organometallics  2007,  26:  4541 
  • For the rhodium(I)-catalyzed asymmetric cycloaddition of vinylcyclopropanes with alkynes, see:
  • 66a Wender PA. Haustedt LO. Lim J. Love JA. Williams TJ. Yoon J.-Y. J. Am. Chem. Soc.  2006,  128:  6302 
  • 66b Shintani R. Nakatsu H. Takatsu K. Hayashi T. Chem. Eur. J.  2009,  15:  8692 
  • For mechanistic considerations, see:
  • 67a Yu Z.-X. Wender PA. Houk KN. J. Am. Chem. Soc.  2004,  126:  9154 
  • 67b Yu Z.-X. Cheong PH.-Y. Liu P. Legault CY. Wender PA. Houk KN. J. Am. Chem. Soc.  2008,  130:  2378 
  • 67c Liu P. Cheong PH.-Y. Yu Z.-X. Wender PA. Houk KN. Angew. Chem. Int. Ed.  2008,  47:  3939 
  • 68a Owada Y. Matsuo T. Iwasawa N. Tetrahedron  1997,  53:  11069 
  • 68b Hayashi M. Ohmatsu T. Meng Y.-P. Saigo K. Angew. Chem. Int. Ed.  1998,  37:  837 
  • 68c Murakami M. Itami K. Ubukata M. Tsuji I. Ito Y. J. Org. Chem.  1998,  63:  4 
  • 68d Schmittel M. Mahajan AA. Bucher G. Bats JW. J. Org. Chem.  2007,  72:  2166 
  • 68e Hiroi K. Kato F. Oguchi T. Saito S. Sone T. Tetrahedron Lett.  2008,  49:  3567 
69

A successful example of a [RhCl(CO)2]2-catalyzed [5+2] cycloaddition involving terminal alkyne and (E)-2-(1-ethoxycyclopropyl)vinyl moieties was reported: See ref. 65g.