References
<A NAME="RG01502ST-1A">1a</A>
Le Bideau F.
Aubert C.
Malacria M.
Tetrahedron: Asymmetry
1995,
6:
697
<A NAME="RG01502ST-1B">1b</A>
Gilloir F.
Malacria M.
Tetrahedron Lett.
1992,
33:
3859
<A NAME="RG01502ST-2">2</A>
Courillon C.
Le Fol R.
Vandendris E.
Malacria M.
Tetrahedron Lett.
1997,
38:
5493
<A NAME="RG01502ST-3">3</A>
Le Bideau F.
Gilloir F.
Nilsson Y.
Aubert C.
Malacria M.
Tetrahedron Lett.
1995,
36:
1641
<A NAME="RG01502ST-4">4</A>
Le Bideau F.
Gilloir F.
Nilsson Y.
Aubert C.
Malacria M.
Tetrahedron
1996,
52:
7487
<A NAME="RG01502ST-5">5</A>
Marion F.
Le Fol R.
Courillon C.
Malacria M.
Synlett
2001,
138
<A NAME="RG01502ST-6">6</A>
Kawai T.
Isobe M.
Peters SC.
Aust. J. Chem.
1995,
48:
115
<A NAME="RG01502ST-7">7</A>
Nobuki O.
Organomet. News
2000,
3:
84
<A NAME="RG01502ST-8">8</A>
Jacobsen EN.
Wu MH. In
Comprehensive Asymmetric Catalysis I-III
Jacobsen EN.
Pfaltz A.
Yamamoto H.
Springer;
New York:
1999.
Chap. 35.
<A NAME="RG01502ST-9">9</A>
Garcia R.
Martinez M.
Aracil J.
Chem. Eng. Technol.
1999,
22:
987
<A NAME="RG01502ST-10">10</A>
Zamojski A.
Chemtracts
1998,
11:
287
<A NAME="RG01502ST-11">11</A>
Behrens CJ.
Sharpless KB.
J. Org. Chem.
1985,
50:
5696
<A NAME="RG01502ST-12">12</A>
Colvin EW.
Chem. Org. Silicon Compd.
1998,
2:
1667
<A NAME="RG01502ST-13">13</A>
Davis AP.
Hughes GJ.
Lowndes P.
Robbins CM.
Thomas EJ.
Whitham GH.
J. Chem. Soc., Perkin
Trans. 1
1981,
7:
1934
<A NAME="RG01502ST-14">14</A>
Hudrlik PF.
Hudrlik AM.
Adv. Silicon Chem.
1993,
2:
1
<A NAME="RG01502ST-15">15</A>
Chauret DC.
Chong JM.
Tetrahedron Lett.
1993,
34:
3695
<A NAME="RG01502ST-16">16</A>
Masnyk M.
Wicha J.
Chem. Ber.
1994,
127:
677
<A NAME="RG01502ST-17">17</A>
Bassindale AR.
Soobramanien M.-C.
Taylor PG.
Bull. Soc. Chim. Fr.
1995,
132:
604
<A NAME="RG01502ST-18">18</A>
Adam W.
Prein M.
Richter MJ.
Tetrahedron
1996,
52:
1231
<A NAME="RG01502ST-19">19</A>
Marshall JA.
Chem. Rev.
1989,
89:
1503
<A NAME="RG01502ST-20">20</A>
Ittah Y.
Sasson Y.
Tsaroom S.
Blum J.
J. Org. Chem.
1978,
43:
4271
<A NAME="RG01502ST-21">21</A>
Coldham I.
Collis AJ.
Mould RJ.
Electron. Conf. Heterocycl. Chem., [Proc.]
1997.
Rzepa HS.
Snyder JP.
Leach C.
Royal Society of Chemistry;
Cambridge:
1997.
<A NAME="RG01502ST-22A">22a</A>
Tenaglia A.
Waegell B.
Tetrahedron Lett.
1988,
29:
4851
<A NAME="RG01502ST-22B">22b</A>
Chini M.
Crotti P.
Macchia F.
Tetrahedron Lett.
1990,
31:
4661
<A NAME="RG01502ST-22C">22c</A>
Hayashi M.
Kohmura K.
Oguni N.
Synlett
1991,
774
<A NAME="RG01502ST-22D">22d</A>
Canas M.
Poch M.
Verdaguer X.
Moyano A.
Pericas MA.
Riera A.
Tetrahedron Lett.
1991,
32:
6931
<A NAME="RG01502ST-23A">23a</A>
Fristad WE.
Bailey TR.
Paquette LA.
Gleiter R.
Böhm MC.
J. Am.Chem. Soc.
1979,
101:
4420
<A NAME="RG01502ST-23B">23b</A>
Tomoda S.
Matsumoto Y.
Takeuchi Y.
Nomura Y.
Chem. Lett.
1986,
7:
1193
<A NAME="RG01502ST-23C">23c</A>
Hudrlik PF.
Hudrlik AM.
Kulkarni AK.
Tetrahedron Lett.
1985,
26:
139
<A NAME="RG01502ST-23D">23d</A>
Chakraborty TK.
Reddy GV.
Tetrahedron Lett.
1990,
31:
1335
<A NAME="RG01502ST-24A">24a</A>
Eisch JJ.
Galle JE.
J. Am. Chem. Soc.
1976,
98:
4646
<A NAME="RG01502ST-24B">24b</A>
Eisch JJ.
Galle JE.
J. Organomet. Chem.
1988,
341:
293
<A NAME="RG01502ST-24C">24c</A>
Molander GA.
Mautner K.
J. Org. Chem.
1989,
54:
4042
<A NAME="RG01502ST-25">25</A>
Eisch JJ.
Galle JE.
J. Org. Chem.
1990,
55:
4835
<A NAME="RG01502ST-26">26</A>
Molander GA.
Mautner K.
Pure Appl. Chem.
1990,
62:
707
<A NAME="RG01502ST-27">27</A>
Preparation of 7a: To a solution of the trans-silylated vinyloxirane 1a (100 mg, 0.54 mmol, 1 equiv) in pentane (10 mL), under argon, was added dropwise,
at -30 °C, to a solution of tert-butyllithium in pentane (0.72 mL of a 1.5 M, 1.08 mmol, 2 equiv). The reaction was
monitored by TLC and after completion of the reaction it was quenched at this temperature,
with a 1:1 solution of propionic acid:diethyl ether. The reaction mixture was then
allowed to warm to room temperature and treated with an excess of a saturated sodium
hydrogenocarbonate solution. The aqueous layer was then extracted with ethyl acetate.
The combined organic layers were washed with brine and dried over anhydrous sodium
sulfate. Flash chromatography on silica gel (petoleum ether/diethyl ether, 98:2) gave
116 mg (89%) of the desired product as a 2:1 mixture of two diastereomers E/Z.
E diastereomer: 1H NMR (200 MHz, C6D6): δ = 5.59 (1 H, dd, J = 15.25, 5.40 Hz), 5.44 (1 H, dt, J = 15.25, 6.90 Hz), 3.93 (1 H, d, J = 5.90 Hz), 1.90 (2 H, d, J = 6.40 Hz), 1.03 (9 H, s), 0.89 (9 H, s), 0.09 (3H, s), -0.02 (3H, s).
13C NMR (50 MHz, C6D6): δ = 136.33, 124.80, 67.77, 48.42, 30.41 (3 C), 28.23 (3 C), 19.44, 18.16, -6.18,
-7.82.
Z diastereomer: 1H NMR (200 MHz, C6D6): δ = 5.64 (1 H, dd, J = 10.82, 10.34 Hz), 5.34 (1 H, m), 4.40 (1 H, d, J = 10.37 Hz), 2.01 (1 H, d, J = 9.20 Hz), 1.80 (1 H, dd, J = 5.62, 1.70 Hz) 1.05 (9 H, s), 0.86 (9 H, s), 0.13 (3 H, s), 0.00 (3 H, s).
13C NMR (50 MHz, C6D6): δ = 133.62, 125.95, 62.38, 41.89, 29.50 (3 C), 27.46 (3 C), 19.60, 17.49, -7.07,
-8.26.
<A NAME="RG01502ST-28">28</A>
Preparation of 10 (typical procedure for lithiation of the cis-epoxide): To a cold solution (-116 °C) of the cis-silylated vinyloxirane 1b (200 mg, 1.08 mmol, 1 equiv) and TMEDA (0.25 mL, 1.63 mmol, 1.5 equiv) in diethyl
ether (10 mL) was added dropwise a solution of sec-butyllithium in cyclohexane (1.67 mL of a 1.3 M, 2.17 mmol, 2 equiv). The reaction
mixture was stirred under argon at this temperature until the bright yellow lithiated
anion precipitated (ca 30-45 minutes). Methyliodide (0.68 mL, 10.85 mmol, 10 equiv)
was then quickly added to the solution and after 10 minutes at -116 °C, the mixture
was allowed to warm to room temperature. The organic layer was washed with a saturated
ammonium chloride solution, and the aqueous phase was extracted with diethyl ether.
The combined organic layers were washed with brine and dried over anhydrous sodium
sulfate. Evaporation under reduced pressure afforded the crude product that was purified
by flash chromatography on silica gel (petroleum ether/diethyl ether, 99:1). The desired
product was obtained in 89% yield.
1H NMR (200 MHz, C6D6): δ = 5.74 (1 H, ddd, J = 17.70, 10.32, 8.36 Hz), 5.25 (1 H, dd, J = 17.22, 1.48 Hz), 5.04 (1 H, dd, J = 10.82, 0.98 Hz), 3.01 (1 H, d, J = 8.38 Hz), 1.18 (3 H, s), 0.90 (9 H, s), 0.05 (3 H, s), 0.00 (3 H, s).
13C NMR (50 MHz, C6D6): δ = 138.09, 119.95, 67.01, 56.64, 28.53 (3 C), 25.87, 18.28, -3.85, -4.21.
<A NAME="RG01502ST-29">29</A>
Rearrangement of 10 with palladium(0): Triphenylphosphite (26 µL, 0.10 mmol, 0.2 equiv) was added via
a syringe to a stirred solution of palladium diacetate (6 mg, 0.03 mmol, 0.05 equiv)
in freshly distilled THF (1 mL). After 10 minutes at room temperature, a solution
of vinylepoxysilane 10 (100 mg, 0.5 mmol, 1 equiv) in THF (2 mL) was transferred by cannula into the pale
yellow reaction mixture. After completion of the rearrangement (ca 2 h), the crude
mixture was filtered through a pad of celite and the organic layer was directly evaporated
under reduced pressure. After purification by flash chromatography on silica gel,
the ketone 14 was obtained in 82% yield.
1H NMR (200 MHz, CDCl3): δ = 6.06 (1 H, ddd, J = 17.22, 10.82, 10.32 Hz), 4.93 (1 H, dd, J = 10.34, 1.48 Hz), 4.90 (1 H, dd, J = 16.74, 1.48 Hz), 3.41 (1 H, d, J = 10.82 Hz), 2.11 (3 H, s), 0.91 (9 H, s), 0.07 (3H, s), 0.03 (3H, s).
13C NMR (50 MHz, C6D6): δ = 207.42, 134.36, 113.99, 54.01, 31.30, 26.84 (3 C), 18.38, -6.12, -6.63.