Zusammenfassung
Mit dem Begriff der Prosodie wird die Modulation von Tonhöhe, Lautstärke, Sprechrhythmus
und Stimmqualität im Verlauf sprachlicher Äußerungen bezeichnet. Neben einer Vielzahl
linguistischer, z. B. Wort- und Satzakzent, und pragmatischer Funktionen, z. B. die
Spezifizierung von Sprechhandlungen, spiegeln prosodische Merkmale auch aktuelle Stimmung
und Befindlichkeit (affektive Prosodie) eines Menschen wider und tragen in Verbindung
mit Gestik und Mimik zum nonverbalen Ausdruck von Emotionen bei. Klinische Untersuchungen
führten zu diskrepanten Modellen der zerebralen Organisation stimmlich-vokalen emotionalen
Verhaltens, z. B. in Bezug auf die Hemisphärenlateralität dieser Leistungen. Funktionell-bildgebende
Studien stellen einen weiterführenden Untersuchungsansatz dar. Die vorliegenden Arbeiten
weisen auf zwei sukzessive Stufen der Wahrnehmung affektiver Prosodie hin: a) eine
vorwiegend rechtshemisphärische Enkodierung von Intonationskonturen, ein akustisches
Korrelat affektiver Prosodie, im Bereich posteriorer Anteile des Gyrus temporalis
superior und b) eine im Wesentlichen an orbitofrontale Strukturen beidseits geknüpfte
Evaluation von Art und Ausprägung der durch affektiv-prosodische Merkmale des Sprachsignals
vermittelten Emotionen. Der Befund einer vorwiegend rechtshemisphärisch-temporalen
hämodynamischen Aktivierung im Rahmen der Verarbeitung von Intonationskonturen verbaler
Äußerungen bestätigt und erweitert das Konzept einer effizienteren Verarbeitung tonaler
Information (Extraktion von Tonhöhenbewegungen, Kurzzeitspeicherung und motorische
Implementierung von Melodien) im Bereich der nicht-sprachdominanten Hirnhälfte. Weiter
abzuklären bleiben die Hemisphärenlateralitätseffekte in Verbindung mit der Enkodierung
von Silben- bzw. Sprechrhythmus als eines weiteren akustischen Korrelats affektiver
Prosodie.
Abstract
Besides a sequence of words, spoken utterances are characterized by prosodic (suprasegmental)
qualities such as a distinct intonation contour („speech melody”), loudness variations,
and a rhythmic structure. In addition to a variety of linguistic and pragmatic functions,
these features may reflect a speaker's mood and, thus, contribute, concomitant with
facial and gestural movements, to the nonverbal expression of emotions (affective
prosody). Clinical studies yielded discrepant data on the cerebral correlates of the
processing of affective prosody. Functional imaging provides a more recent approach
to the analysis of brain-behaviour relationships. The available investigations indicate
two successive stages of the perceptual encoding of affective prosody: (a) predominant
right-hemisphere processing of intonation contours within posterior parts of the superior
temporal gyrus, (b) evaluation of the conveyed emotion at the level of bilateral orbitofrontal
cortex. These findings corroborate and extend the model of a more proficient analysis
and short-term storage of tonal information within the right cerebral hemisphere.
Literatur
1 Moritz K P. Versuch einer deutschen Prosodie. Berlin, 1786 (unveränderter Nachdruck,
mit einem Vorwort von T. P. Saine). Darmstadt; Wissenschaftliche Buchgesellschaft
1973
2
Monrad-Krohn G H.
Dysprosody or altered „melody of language”.
Brain.
1947;
70
405-415
3 Johnson K, Mullennix J W (eds). Talker Variability in Speech Processing. San Diego,
London, Boston; Academic Press 1997
4
Sidtis J J, Lancker D S Van.
A neurobehavioral approach to dysprosody.
Semin Speech Lang.
2003;
24
93-105
5 Heilman K M, Bowers D, Valenstein E.
Emotional disorders associated with neurological diseases. In: Heilman KM, Valenstein E (eds) Clinical Neuropsychology, 3rd ed. New York, Oxford; Oxford University Press 1993: 461-497
6
Bowers D, Coslett H B, Bauer R M. et al .
Comprehension of emotional prosody following unilateral hemispheric lesions: processing
defect versus distraction defect.
Neuropsychologia.
1987;
25
317-328
7
Monrad-Krohn G H.
The prosodic quality of speech and its disorders.
Acta Psychiat Neurol Scand.
1947;
22
255-269
8 Monrad-Krohn G H.
The third element of speech prosody and its disorders. In: Halpern L (ed) Problems of Dynamic Neurology. Jerusalem; The Department of Nervous
Diseases of the Rothschild Hadassah University Hospital and the Hebrew University
Hadassah Medical School 1963: 101-118
9 Ramsey S R. The Languages of China. Princeton; Princeton University Press 1987
10
Banse R, Scherer K R.
Acoustic profiles in vocal emotion expression.
J Pers Soc Psychol.
1996;
70
614-636
11
Scherer K R.
Vocal communication of emotion: a review of research paradigms.
Speech Commun.
2003;
40
227-256
12
Ackermann H, Hertrich I, Ziegler W.
Prosodische Störungen bei neurologischen Erkrankungen: eine Literaturübersicht.
Fortschr Neurol Psychiat.
1993;
61
241-253
13
Pick A.
Über Änderungen des Sprachcharakters als Begleiterscheinung aphasischer Störungen.
Z ges Neurol Psychiat.
1919;
45
230-241
14
Schirmer A, Alter K, Kotz S A, Friederici A D.
Lateralization of prosody during language production: a lesion study.
Brain Lang.
2001;
76
1-17
15
Hughlings Jackson J.
On affections of speech from disease of the brain (reprint from Brain 1879).
Brain.
1915;
38
107-129
16
Dordain M, Degos J D, Dordain G.
Troubles de la voix dans les hémiplégies gauches.
Rev Laryngol.
1971;
92
178-188
17
Tucker D, Watson R, Heilman K.
Discrimination and evocation of affectively intoned speech in patients with right
parietal disease.
Neurology.
1977;
27
947-950
18
Ross E D, Mesulam M M.
Dominant language functions of the right hemisphere? Prosody and emotional gesturing.
Arch Neurol.
1979;
36
144-148
19
Ross E D.
The aprosodias: functional-anatomic organization of the affective components of language
in the right hemisphere.
Arch Neurol.
1981;
38
561-569
20
Edmondson J, Chan J L, Seibert G, Ross E.
The effect of right-brain damage on acoustical measures of affective prosody in Taiwanese
patients.
J Phonet.
1987;
15
219-233
21
Ross E, Edmondson J, Seibert G, Homan W.
Acoustic analysis of affective prosody during right-sided Wada test: a within-subjects
verification of the right hemisphere's role in language.
Brain Lang.
1988;
33
128-145
22
Baum S R, Pell M D.
The neural bases of prosody: insights from lesion studies and neuroimaging.
Aphasiology.
1999;
13
581-608
23
Cancelliere A, Kertesz A.
Lesion localization in acquired deficits of emotional expression and comprehension.
Brain Cogn.
1990;
13
133-147
24
Ackermann H, Ziegler W.
Akinetischer Mutismus: eine Literaturübersicht.
Fortschr Neurol Psychiat.
1995;
63
59-67
25
Ackermann H, Ziegler W.
Die Dysarthrophonie des Parkinson-Syndroms.
Fortschr Neurol Psychiat.
1989;
57
149-160
26 Ackermann H.
Acquired disorders of articulation: classification and intervention. In: Fabbro F (ed) Concise Encyclopedia of Language Pathology. Amsterdam, Lausanne,
New York; Elsevier 1999: 261-268
27
Breitenstein C, Daum I, Ackermann H.
Emotional processing following cortical and subcortical brain damage: contribution
of the fronto-striatal circuitry.
Behav Neurol.
1998;
11
1-14
28
Heilman K M, Scholes R, Watson R T.
Auditory affective agnosia: disturbed comprehension of affective speech.
J Neurol Neurosurg Psychiatry.
1975;
38
69-72
29
Ley R G, Bryden M P.
A dissociation of right and left hemispheric effects for recognizing emotional tone
and verbal content.
Brain Cogn.
1982;
1
3-9
30
Shipley-Brown F, Dingwall W O, Berlin C I. et al .
Hemispheric processing of affective and linguistic intonation contours in normal subjects.
Brain Lang.
1988;
33
16-26
31
Heilman K M, Bowers D, Speedie L, Coslett H B.
Comprehension of affective and nonaffective prosody.
Neurology.
1984;
34
917-921
32
Emmorey K D.
The neurological substrates for prosodic aspects of speech.
Brain Lang.
1987;
30
305-320
33
Pell M D, Baum S R.
The ability to perceive and comprehend intonation in linguistic and affective contexts
by brain-damaged adults.
Brain Lang.
1997;
57
80-99
34 Geigenberger A, Ziegler W.
Processing of emotional prosodic information in patients with unilateral brain lesions. In: Ziegler W, Deger K (eds) Clinical Phonetics and Linguistics. London; Whurr 1998:
359-366
35
Klouda G, Robin D, Graff-Radford N, Cooper W.
The role of callosal connections in speech prosody.
Brain Lang.
1988;
35
154-171
36
Baum S, Pell M.
Production of affective and linguistic prosody by brain-damaged patients.
Aphasiology.
1997;
11
177-198
37 Friederici A D, Alter K. Lateralization of auditory language functions: a dynamic
dual pathway view. Brain Lang 2004, in press
38
Lancker D Van.
Cerebral lateralization of pitch cues in the linguistic signal.
Int J Human Commun.
1980;
13
227-277
39
Lancker D Van, Sidtis J J.
The identification of affective-prosodic stimuli by left- and right-hemisphere-damaged
subjects: all errors are not created equal.
J Speech Hear Res.
1992;
35
963-970
40
Ahern G L, Herring A M, Labiner D M. et al .
Affective self-report during the intracarotid sodium amobarbital test: group differences.
J Int Neuropsychol Soc.
2000;
6
659-667
41 Davidson R J, Tomarken A J.
Laterality and emotion: an electrophysiological approach. In: Boller F, Grafman J (eds) Handbook of Neuropsychology, vol. 3. Amsterdam, New
York, Oxford; Elsevier 1989: 419-441
42
Canli T, Desmond J E, Zhao Z. et al .
Hemispheric asymmetry for emotional stimuli detected with fMRI.
NeuroReport.
1998;
9
3233-3239
43
Davidson R J, Abercrombie H, Nitschke J B, Putnam K.
Regional brain function, emotion and disorders of emotion.
Curr Opin Neurobiol.
1999;
9
228-234
44
Pell M D.
Recognition of prosody following unilateral brain lesion: influence of functional
and structural attributes of prosodic contours.
Neuropsychologia.
1998;
36
701-715
45
Kucharska-Pietura K, Phillips M L, Gernand W, David A S.
Perception of emotions from faces and voices following unilateral brain damage.
Neuropsychologia.
2003;
41
1082-1090
46
Dogil G, Ackermann H, Grodd W. et al .
The speaking brain: a tutorial introduction to fMRI experiments in the production
of speech, prosody and syntax.
J Neuroling.
2002;
15
59-90
47 Dogil G, Ackermann H, Grodd W. et al .
Brain dynamics induced by language production. In: Pechmann T, Habel C (eds) Multidisciplinary Approaches to Language Production. Berlin,
New York; Mouton de Gruyter 2004: 397-429 (Trends in Linguistics: Studies and Monographs
157)
48
Riecker A, Wildgruber D, Dogil G. et al .
Hemispheric lateralization effects of rhythm implementation during syllable repetitions:
an fMRI study.
NeuroImage.
2002;
16
169-176
49
Papanicolaou A C, Levin H S, Eisenberg H M, Moore B D.
Evoked potential indices of selective hemispheric engagement in affective and phonetic
tasks.
Neuropsychologia.
1983;
21
401-405
50
Pihan H, Altenmüller E, Ackermann H.
The cortical processing of perceived emotion: a DC-potential study on affective speech
prosody.
NeuroReport.
1997;
8
623-627
51
Pihan H, Altenmüller E, Hertrich I, Ackermann H.
Cortical activation patterns of affective speech processing depend on concurrent demands
on the subvocal rehearsal system: a DC-potential study.
Brain.
2000;
123
2338-2349
52
Wildgruber D, Ackermann H, Klose U. et al .
Functional lateralization of speech production at primary motor cortex: a fMRI study.
NeuroReport.
1996;
7
2791-2795
53
Riecker A, Ackermann H, Wildgruber D. et al .
Opposite hemispheric lateralization effects during speaking and singing at motor cortex,
insula and cerebellum.
NeuroReport.
2000;
11
1997-2000
54 Ackermann H, Riecker A, Wildgruber D.
Functional brain imaging of motor aspects of speech production. In: Maassen B, Kent RD, Peters HFM, Lieshout PHHM van, Hulstijn W (eds) Speech Motor
Control in Normal and Disordered Speech. Oxford, New York, Auckland; Oxford University
Press 2004: 85-111
55
George M S, Parekh P I, Rosinsky N. et al .
Understanding emotional prosody activates right hemisphere regions.
Arch Neurol.
1996;
53
665-670
56
Imaizumi S, Mori K, Kiritani S. et al .
Vocal identification of speaker and emotion activates different brain regions.
NeuroReport.
1997;
8
2809-2812
57
Buchanan T W, Lutz K, Mirsazade S. et al .
Recognition of emotional speech prosody and verbal components of spoken language:
an fMRI study.
Cogn Brain Res.
2000;
9
227-238
58
Stiller D, Gaschler-Markefski B, Baumgart F. et al .
Lateralized processing of speech prosodies in the temporal cortex: a 3-T functional
magnetic resonance imaging study.
MAGMA.
1997;
5
275-284
59
Mitchell R L, Elliott R, Barry M. et al .
The neural response to emotional prosody, as revealed by functional magnetic resonance
imaging.
Neuropsychologia.
2003;
41
1410-1421
60
Meyer M, Alter K, Friederici A D. et al .
FMRI reveals brain regions mediating slow prosodic modulations in spoken sentences.
Hum Brain Mapp.
2002;
17
73-88
61
Schirmer A, Kotz S A, Friederici A D.
Sex differentiates the role of emotional prosody during word processing.
Cogn Brain Res.
2002;
14
228-233
62 Zatorre R J.
Hemispheric asymmetries in the processing of tonal stimuli. In: Hugdahl K, Davidson RJ (eds) The Asymmetrical Brain. Cambridge, London; MIT Press
2003: 411-440
63
Zatorre R J.
Sound analysis in auditory cortex.
Trends Neurosci.
2003;
26
229-230
64 Ivry R B, Robertson L C. The Two Sides of Perception. Cambridge, London; MIT Press
1998
65
Poeppel D.
Pure word deafness and the bilateral processing of the speech code.
Cognitive Science.
2001;
25
679-693
66 Wildgruber D, Hertrich I, Riecker A. et al .Distinct frontal regions subserve the
evaluation of linguistic and emotional aspects of speech intonation. Cereb Cortex
2004, in press
67
Nakamura K, Kawashima R, Ito K. et al .
Activation of the right inferior frontal cortex during assessment of facial emotion.
J Neurophysiol.
1999;
82
1610-1614
68
Blair R JR, Morris J S, Frith C D. et al .
Dissociable neural responses to facial expressions of sadness and anger.
Brain.
1999;
122
883-893
69
Small D M, Zatorre R J, Dagher A. et al .
Changes in brain activity related to eating chocolate: from pleasure to aversion.
Brain.
2001;
124
1720-1733
70
Wildgruber D, Pihan H, Ackermann H. et al .
Dynamic brain activation during processing of emotional intonation: influence of acoustic
parameters, emotional valence, and sex.
NeuroImage.
2002;
15
856-869
71
Lancker D R Van, Canter G J.
Impairment of voice and face recognition in patients with hemispheric damage.
Brain Cogn.
1982;
1
185-195
72
Ackermann H, Mathiak K.
Symptomatologie, pathologisch-anatomische Grundlagen und Pathomechanismen zentraler
Hörstörungen (reine Worttaubheit, auditive Agnosie, Rindentaubheit): eine Literaturübersicht.
Fortschr Neurol Psychiat.
1999;
67
509-523
73
Hornak J, Rolls E T, Wade D.
Face and voice expression identification in patients with emotional and behavioural
changes following ventral frontal lobe damage.
Neuropsychologia.
1996;
34
247-261
74
Hornak J, Bramham J, Rolls E T. et al .
Changes in emotion after circumscribed surgical lesions of the orbitofrontal and cingulate
cortices.
Brain.
2003;
126
1691-1712
75 Sidtis J J.
Music, pitch perception, and the mechanisms of cortical hearing. In: Gazzaniga M (ed) Handbook of Cognitive Neuroscience. New York; Plenum Press 1984:
91-114
76
Johnsrude I J, Penhune V B, Zatorre R J.
Functional specificity in right human auditory cortex for perceiving pitch direction.
Brain.
2000;
123
155-163
77
Zatorre R J, Evans A C, Meyer E, Gjedde A.
Lateralization of phonetic and pitch discrimination in speech processing.
Science.
1992;
256
846-849
78
Mathiak K, Hertrich I, Lutzenberger W, Ackermann H.
Functional cerebral asymmetries of pitch processing during dichotic stimulus application:
a whole-head magnetoencephalography study.
Neuropsychologia.
2002;
46
585-593
79 Hertrich I, Mathiak K, Lutzenberger W, Ackermann H. Time course and hemispheric
lateralization of complex pitch processing: evoked magnetic fields in response to
rippled noise stimuli. Neuropsychologia 2004, in press
80 Ackermann H, Riecker A, Wildgruber D.
Cerebral correlates of singing capabilities in humans: clinical observations, experimental-behavioural
studies, and functional imaging data. In: Altenmüller E, Kesselring J, Wiesendanger M (eds) Music, Motor Control, and the
Brain. Oxford, New York, Auckland; Oxford University Press 2005 in press
81
Ackermann H, Riecker A, Mathiak K. et al .
Rate-dependent activation of a prefrontal-insular-cerebellar network during passive
listening to trains of click stimuli: an fMRI study.
NeuroReport.
2001;
12
4087-4092
82
Ackermann H, Riecker A.
The contribution of the insula to motor aspects of speech production: a review and
a hypothesis.
Brain Lang.
2004;
89
320-328
Prof. Dr. Hermann Ackermann,M. A.
Neurologische Klinik Universität Tübingen
Hoppe-Seyler-Straße 3
72076 Tübingen
eMail: hermann.ackermann@uni-tuebingen.de