References
<A NAME="RD23305ST-1">1</A>
Saxton JE.
The Chemistry of Heterocyclic Compounds
Part IV, Vol. 25:
Wiley;
New York:
1983.
<A NAME="RD23305ST-2">2</A>
A search for the indole core in WDI database retrieved more than 3700 hits. See also
ref. 5.
<A NAME="RD23305ST-3A">3a</A>
Bartoli G.
Palmieri G.
Bosco M.
Dalpozzo R.
Tetrahedron Lett.
1989,
30:
2129
<A NAME="RD23305ST-3B">3b</A>
Heath-Brown B.
Philpott PG.
J. Chem. Soc.
1965,
7185
<A NAME="RD23305ST-3C">3c</A>
McKittrick B.
Failli A.
Steffan RJ.
Soll RM.
J. Heterocycl. Chem.
1990,
27:
2151
<A NAME="RD23305ST-3D">3d</A>
Clark RD.
Repke DB.
Heterocycles
1984,
22:
195
<A NAME="RD23305ST-4">4</A> Review on the use of transition metals in the synthesis and functionalisation
of indoles:
Hegedus LS.
Angew. Chem., Int. Ed. Engl.
1988,
27:
1113
<A NAME="RD23305ST-5A">5a</A> This article gives a very comprehensive overview of the challenges faced in
the synthesis of 7-substituted indoles:
Ezquerra J.
Pedregal C.
Lamas C.
J. Org. Chem.
1996,
61:
5804 ; and references cited therein
<A NAME="RD23305ST-5B">5b</A>
Rodriguez AL.
Koradin C.
Dohle W.
Knochel P.
Angew. Chem. Int. Ed.
2000,
39:
2488 ; and references cited therein
<A NAME="RD23305ST-5C">5c</A>
Koradin C.
Dohle W.
Rodriguez AL.
Schmid B.
Knochel P.
Tetrahedron
2003,
59:
1571
It is possible to functionalise the 3-position in situ, but it implies concomitant
substitution at the 2-position:
<A NAME="RD23305ST-6A">6a</A>
Arcadi A.
Cacchi S.
Carcinelli V.
Marinelli F.
Tetrahedron
1994,
50:
437
<A NAME="RD23305ST-6B">6b</A>
Arcadi A.
Cacchi S.
Marinelli F.
Tetrahedron Lett.
1992,
33:
3915
<A NAME="RD23305ST-7">7</A>
Larock RC.
Yum EK.
Refvik MD.
J. Org. Chem.
1998,
63:
7652
<A NAME="RD23305ST-8">8</A>
Satoh M.
Miyaura N.
Suzuki A.
Synthesis
1987,
373
<A NAME="RD23305ST-9A">9a</A>
Odle R.
Blevins B.
Ratcliff M.
Hegedus LS.
J. Org. Chem.
1980,
45:
2709
<A NAME="RD23305ST-9B">9b</A> See also:
Yang S.
Chung W.
Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem.
1999,
38:
897
<A NAME="RD23305ST-10">10</A>
Hartung CG.
Fecher A.
Chapell B.
Snieckus V.
Org. Lett.
2003,
5:
1899
<A NAME="RD23305ST-11A">11a</A>
Somei M.
Saida Y.
Heterocycles
1985,
23:
3113
<A NAME="RD23305ST-11B">11b</A>
Somei M.
Yamada F.
Hamada H.
Kawasaki T.
Heterocycles
1989,
29:
643
<A NAME="RD23305ST-12">12</A>
Iwao M.
Heterocycles
1994,
38:
45
<A NAME="RD23305ST-13">13</A> A similar strategy has previously been reported:
Macor JE.
Ogilvie RJ.
Wythes MJ.
Tetrahedron Lett.
1996,
37:
4289
<A NAME="RD23305ST-14">14</A>
Aniline 2 is also commercially available from Maybridge.
<A NAME="RD23305ST-15A">15a</A>
Jeffery T.
David M.
Tetrahedron Lett.
1998,
39:
5751
<A NAME="RD23305ST-15B">15b</A>
Jeffery T.
Tetrahedron
1996,
52:
10113
Reviews:
<A NAME="RD23305ST-15C">15c</A>
De Meijere A.
Meyer FE.
Angew. Chem., Int. Ed. Engl.
1994,
33:
2379
<A NAME="RD23305ST-15D">15d</A>
Jeffery T. In Advances in Metal-Organic Chemistry
Vol. 5:
Liebeskind LS.
JAI Press;
Greenwich CT:
1996.
p.153-260
<A NAME="RD23305ST-16">16</A>
Gardiner JM.
Loyns CR.
Schwalbe CH.
Barrett GC.
Lowe PR.
Tetrahedron
1995,
51:
4101 ; and references therein
<A NAME="RD23305ST-17A">17a</A>
Bosch J.
Roca T.
Armengol M.
Fernandez-Forner D.
Tetrahedron
2001,
57:
1041
<A NAME="RD23305ST-17B">17b</A>
See also ref. 13.
<A NAME="RD23305ST-18">18</A>
The NOE experiment proved that the stereochemistry of the exocyclic double bond is
as shown in Scheme
[3]
.
<A NAME="RD23305ST-19A">19a</A>
Hegedus LS.
Mulhern TA.
Mori A.
J. Org. Chem.
1985,
50:
4282
<A NAME="RD23305ST-19B">19b</A>
See also ref. 9b.
<A NAME="RD23305ST-20">20</A>
Sakamoto T.
Kondo Y.
Uchiyama M.
Yamanaka H.
J. Chem. Soc., Perkin Trans. 1
1993,
1941
<A NAME="RD23305ST-21">21</A> For a recent synthesis of 7-hydroxyindole see:
Lerman L.
Weinstock-Rosin M.
Nudelman A.
Synthesis
2004,
3043
<A NAME="RD23305ST-22">22</A>
Removal of the TFA proved more difficult than in the case of amide 11 and was not complete after 2 d using similar conditions (deprotection of 11 takes 15 min at r.t.). We therefore did not attempt the Heck cyclisation on the unprotected
aniline.
<A NAME="RD23305ST-23">23</A>
Typical Procedure.
To a solution of methyl 3-bromo-4-[(2E,Z)-2-buten-1-yl(trifluoroacetyl)amino]-5-[(phenylmethyl)oxy]benzoate (20, 12.3 g, 25.3 mmol, 1 equiv) in DMF (150 mL) were added Na2CO3 (6.7 g, 63.3 mmol, 2.5 equiv), Bu4NCl (7.7 g, 27.8 mmol, 1.1 equiv) and Pd(OAc)2 (570 mg, 2.53 mmol, 0.1 equiv) and the resulting mixture was stirred under nitrogen
at 100 °C for 2 h then cooled to r.t. and concentrated in vacuo. The residue was partitioned
between EtOAc and H2O and the layers were separated. The aqueous phase was extracted with EtOAc and the
combined organic phases were washed with H2O and brine, dried over MgSO4 and concentrated in vacuo. Purification of the residue by flash chromatography on
silica gel (iso-hexane-EtOAc, 9:1 to 3:1) gave methyl 3-ethyl-7-[(phenylmethyl)oxy]-1H-indole-5-carboxylate (21, 6.7 g, 86%) as a white solid; mp 96-98 °C. MS (ES): m/z = 310.0 [M + H]+. 1H (400 MHz, CDCl3): δ = 1.33 (t, 3 H, J = 7.2 Hz), 2.79 (q, 2 H, J = 7.2 Hz), 3.93 (s, 3 H), 5.23 (s, 2 H), 6.98 (s, 1 H), 7.31-7.51 (m, 6 H), 8.07
(s, 1 H), 8.43 (br s, 1 H). 13C (100.6 MHz, CDCl3): δ = 14.6, 18.3, 52.0, 70.5, 103.6, 115.9, 120.8, 121.2, 121.7, 128.1, 128.2, 128.3,
128.7, 129.8, 136.7, 144.8, 168.4. MS: m/z calcd for C19H20NO3: 310.14377; found: 310.14372.