Abstract
One-pot three-component Strecker reaction of ketones/fluorinated ketones for the preparation
of α-aminonitriles/fluorinated α-aminonitriles has been achieved using trimethylsilyl
trifluoromethanesulfonate [(CH3 )3 SiOSO2 CF3 , TMSOTf)] as a metal-free strong Lewis acid catalyst. These reactions are simple
and clean, giving the products in high yield and high purity. α-Aminonitriles and
their fluorinated analogues are important classes of compounds, which show interesting
pharmaceutical and biological properties. Presence of fluorine atom increases their
biological activities significantly.
Key words
multicomponent reaction - metal-free organocatalyst - TMSOTf - fluorinated ketones
- α-aminonitriles
References and Notes
<A NAME="RS02407ST-1A">1a </A>
Qiu X.-L.
Meng W.-D.
Quing F.-L.
Tetrahedron
2004,
60:
6711
<A NAME="RS02407ST-1B">1b </A>
Sutherland A.
Willis CL.
Nat. Prod. Rep.
2000,
17:
621
<A NAME="RS02407ST-1C">1c </A>
Haufe G.
Kröger S.
Amino Acids
1996,
11:
409
<A NAME="RS02407ST-1D">1d </A>
Tolman V.
Amino Acids
1996,
11:
15
<A NAME="RS02407ST-1E">1e </A>
Kelly NM.
Sutherland A.
Willis CL.
Nat. Prod. Rep.
1997,
14:
205
<A NAME="RS02407ST-1F">1f </A>
Dev R.
Badet B.
Meffre P.
Amino Acids
2003,
24:
245
<A NAME="RS02407ST-1G">1g </A>
Kukhar VP.
Soloshonok VA.
Fluorine-Containing Amino Acids: Synthesis and Properties
Wiley;
New York:
1995.
<A NAME="RS02407ST-2">2 </A>
Filler R.
Kobayashi Y.
Yagupolskii LM.
Biomedical Aspects of Fluorine Chemistry
Elsevier;
Amsterdam:
1993.
<A NAME="RS02407ST-3">3 </A>
Relimpio A.
Slebe JC.
Martinez-Carrion M.
Biochem. Biophys. Res. Commun.
1975,
63:
625
<A NAME="RS02407ST-4A">4a </A>
Yoder NC.
Kumar K.
Chem. Soc. Rev.
2002,
31:
335
<A NAME="RS02407ST-4B">4b </A>
Marsh ENG.
Chem. Biol.
2000,
7:
R153
<A NAME="RS02407ST-4C">4c </A>
Salopek-Sondi B.
Vaughan MD.
Skeels MC.
Honek JF.
Luck LA.
J. Biomol. Struct. Dyn.
2003,
21:
235
<A NAME="RS02407ST-4D">4d </A>
Bai P.
Luo L.
Peng Z.
Biochemistry
2000,
39:
372
<A NAME="RS02407ST-4E">4e </A>
Fischer M.
Schott A.-K.
Kemter K.
Feicht R.
Ritcher G.
Illarionov B.
Eisenreich W.
Gerhardt S.
Cushman M.
Steinbacher S.
Huber R.
Bacher A.
BMC Biochemistry
2003,
4:
18
<A NAME="RS02407ST-4F">4f </A>
Danielson MA.
Falke JJ.
Ann. Rev. Biophys. Biomol. Struct.
1996,
25:
163
<A NAME="RS02407ST-4G">4g </A>
Ropson IJ.
Frieden C.
Proc. Natl. Acad. Sci. U. S. A.
1992,
89:
7222
<A NAME="RS02407ST-4H">4h </A>
Cairi M.
Gerig JT.
Hammond SJ.
Klinkenborg JC.
Nieman RA.
Bull. Magn. Reson.
1983,
5:
157
<A NAME="RS02407ST-5">5 </A>
Strecker A.
Justus Liebigs Ann. Chem.
1850,
75:
27
<A NAME="RS02407ST-6A">6a </A>
Warmuth R.
Munsch TE.
Stalker RA.
Li B.
Beatty A.
Tetrahedron
2001,
57:
6383
<A NAME="RS02407ST-6B">6b </A>
Surendra K.
Krishnaveni NS.
Mahesh A.
Rao KR.
J. Org. Chem.
2006,
71:
2532
<A NAME="RS02407ST-6C">6c </A>
Suginome M.
Yamamoto A.
Ito Y.
Chem. Commun.
2002,
1392
<A NAME="RS02407ST-6D">6d </A>
Fetterly BM.
Jana NK.
Verkade JG.
Tetrahedron
2006,
62:
440
<A NAME="RS02407ST-7A">7a </A>
Matsumoto K.
Kim JC.
Iida H.
Hamana H.
Kumamoto K.
Kotsuki H.
Jenner G.
Helv. Chim. Acta
2005,
88:
1734
<A NAME="RS02407ST-7B">7b </A>
Jenner G.
Salen RB.
Kim JC.
Matsumoto K.
Tetrahedron Lett.
2003,
44:
447
<A NAME="RS02407ST-8A">8a </A>
Rousset A.
Lasperas M.
Taillades J.
Commeyras A.
Tetrahedron
1980,
36:
2649
<A NAME="RS02407ST-8B">8b </A>
Pascal R.
Taillades J.
Commeyras A.
Tetrahedron
1978,
34:
2275
<A NAME="RS02407ST-8C">8c </A>
Bejaud M.
Mion L.
Commeyras A.
Tetrahedron Lett.
1975,
34:
2985
<A NAME="RS02407ST-8D">8d </A>
Taillades J.
Commeyras A.
Tetrahedron
1974,
30:
127
<A NAME="RS02407ST-8E">8e </A>
Taillades J.
Commeyras A.
Tetrahedron
1974,
30:
2493
<A NAME="RS02407ST-8F">8f </A>
Taillades J.
Commeyras A.
Tetrahedron
1974,
30:
3407
<A NAME="RS02407ST-9">9 </A>
McConathi J.
Martarello L.
Malveaux EJ.
Camp VM.
Simpson NE.
Simpson CP.
Bowers GD.
Olson JJ.
Goodman MM.
J. Med. Chem.
2002,
45:
2240
<A NAME="RS02407ST-10">10 </A>
Prakash GKS.
Mathew T.
Panja C.
Alconcel S.
Vaghoo H.
Olah GA.
Proc. Natl. Acad. Sci. U. S. A.
2007,
104:
3703
<A NAME="RS02407ST-11A">11a </A>
Berkessel A.
Gröger H.
Asymmetric Organocatalysis - From Biomimetic Concepts to Applications in Asymmetric
Synthesis
Wiley-VCH;
Weinheim:
2005.
<A NAME="RS02407ST-11B">11b </A>
Schreiner PR.
Chem. Soc. Rev.
2003,
32:
289
<A NAME="RS02407ST-11C">11c </A>
Dalko P.
Moisan L.
Angew. Chem. Int. Ed.
2001,
40:
3726
<A NAME="RS02407ST-11D">11d </A>
Dalko P.
Moisan L.
Angew. Chem. Int. Ed.
2004,
43:
5138 ; and references therein
<A NAME="RS02407ST-11E">11e </A>
Langenbeck W.
Die organischen Katalysatoren und ihre Beziehungen zu den Fermenten
2nd ed.:
Springer;
Berlin:
1949.
<A NAME="RS02407ST-11F">11f </A>
Bredig G.
Fiske WS.
Biochem. Z.
1912,
7
<A NAME="RS02407ST-11G">11g </A>
Langenbeck W.
Angew. Chem.
1928,
41:
740
<A NAME="RS02407ST-11H">11h </A>
Langenbeck W.
Angew. Chem.
1932,
45:
97
<A NAME="RS02407ST-12A">12a </A>
Pilli RA.
Dias LC.
Synth. Commun.
1991,
21:
2213
<A NAME="RS02407ST-12B">12b </A>
Frick U.
Simchen G.
Synthesis
1984,
929
<A NAME="RS02407ST-12C">12c </A>
Emde H.
Domsch D.
Feger H.
Frick U.
Götz A.
Hergott HH.
Hofmann K.
Kober W.
Krägeloh K.
Oesterle T.
Steppan W.
West W.
Simchen G.
Synthesis
1982,
1
<A NAME="RS02407ST-12D">12d </A>
Borgulya J.
Bernauer K.
Synthesis
1980,
545
<A NAME="RS02407ST-12E">12e </A>
Tsunoda T.
Suzuki M.
Noyori R.
Tetrahedron Lett.
1980,
21:
1357
<A NAME="RS02407ST-12F">12f </A>
Emde H.
Simchen G.
Synthesis
1977,
867
<A NAME="RS02407ST-12G">12g </A>
Emde H.
Simchen G.
Synthesis
1977,
636
<A NAME="RS02407ST-12H">12h </A>
Simchen G.
West W.
Synthesis
1977,
247
<A NAME="RS02407ST-13A">13a </A>
Sassaman MB.
Prakash GKS.
Olah GA.
Tetrahedron
1988,
44:
3771
<A NAME="RS02407ST-13B">13b </A>
Sassaman MB.
Kotian KD.
Prakash GKS.
Olah GA.
J. Org. Chem.
1987,
52:
4314
<A NAME="RS02407ST-14A">14a </A>
Schweizer F.
Hindsgaul O.
Carbohydr. Res.
2006,
341:
1730
<A NAME="RS02407ST-14B">14b </A>
Wang C.-X.
Shi X.-X.
Chen G.-R.
Ren Z.-H.
Luo L.
Yan J.
Carbohydr. Res.
2006,
341:
1945
<A NAME="RS02407ST-14C">14c </A>
Kawecki R.
Tetrahedron: Asymmetry
2006,
17:
1420
<A NAME="RS02407ST-14D">14d </A>
Myers EL.
Butts CE.
Aggarwal VK.
Chem. Commun.
2006,
4434
<A NAME="RS02407ST-14E">14e </A>
Liautard V.
Desvergnes V.
Martin OR.
Org. Lett.
2006,
8:
1299
<A NAME="RS02407ST-14F">14f </A>
Conrow RE.
Org. Lett.
2006,
8:
2441
<A NAME="RS02407ST-14G">14g </A>
Appel B.
Rotzoll S.
Kranich R.
Reinke H.
Langer P.
Eur. J. Org. Chem.
2006,
3638
<A NAME="RS02407ST-14H">14h </A>
Anzalone PW.
Mohan RS.
Synthesis
2005,
2661
<A NAME="RS02407ST-14I">14i </A>
Tsuda T.
Arihara R.
Sato S.
Koshiba M.
Nakamura S.
Hashimoto S.
Tetrahedron
2005,
61:
10719
<A NAME="RS02407ST-14J">14j </A>
Dziedzic M.
Lipner G.
Furman B.
Tetrahedron Lett.
2005,
46:
6861
<A NAME="RS02407ST-14K">14k </A>
Sawada D.
Takahashi H.
Shiro M.
Ikegami S.
Tetrahedron Lett.
2005,
46:
2399
<A NAME="RS02407ST-14L">14l </A>
Shi M.
Yang Y.-H.
Xu B.
Tetrahedron
2005,
61:
1893
<A NAME="RS02407ST-14M">14m </A>
Kang HJ.
Kim SH.
Pae AN.
Koh HY.
Chang MH.
Choi KI.
Han S.-Y.
Cho YS.
Synlett
2004,
2545
<A NAME="RS02407ST-14N">14n </A>
Tranel F.
Haufe G.
J. Fluorine Chem.
2004,
125:
1593
<A NAME="RS02407ST-14O">14o </A>
Murakami T.
Furusawa K.
Synthesis
2004,
1566
<A NAME="RS02407ST-14P">14p </A>
Saito A.
Tanaka A.
Ubukata M.
Nakajima N.
Synlett
2004,
1069
<A NAME="RS02407ST-14Q">14q </A>
Ali IAI.
El Ashry EH.
Schmidt RR.
Tetrahedron
2004,
60:
4773
<A NAME="RS02407ST-14R">14r </A>
Kim BJ.
Sasaki T.
J. Org. Chem.
2004,
69:
3242
<A NAME="RS02407ST-14S">14s </A>
Goundri WRF.
Synlett
2003,
1940
<A NAME="RS02407ST-15A">15a </A>
Cai S.
Yu B.
Org. Lett.
2003,
5:
3827
<A NAME="RS02407ST-15B">15b </A>
Kurihara M.
Hakamata W.
J. Org. Chem.
2003,
68:
3413
<A NAME="RS02407ST-15C">15c </A>
Yamanaka M.
Nishida A.
Nakagawa M.
J. Org. Chem.
2003,
68:
3112
<A NAME="RS02407ST-15D">15d </A>
Kakuuchi A.
Taguchi T.
Hanzawa Y.
Eur. J. Org. Chem.
2003,
116
<A NAME="RS02407ST-15E">15e </A>
Sato Y.
Tateno G.
Seio K.
Sekine M.
Eur. J. Org. Chem.
2002,
87
<A NAME="RS02407ST-15F">15f </A>
Sugiura M.
Hagio H.
Hirabayashi R.
Kobayashi S.
J. Am. Chem. Soc.
2001,
123:
12510
<A NAME="RS02407ST-15G">15g </A>
Ravichandran S.
Synth. Commun.
2001,
31:
2345
<A NAME="RS02407ST-15H">15h </A>
Ishikawa T.
Okano M.
Saito S.
J. Org. Chem.
2001,
66:
4635
<A NAME="RS02407ST-15I">15i </A>
Kakuuchi A.
Taguchi T.
Hanzawa Y.
Tetrahedron Lett.
2001,
42:
1547
<A NAME="RS02407ST-15J">15j </A>
Aikawa T.
Haynes RK.
Lam K.-P.
Wu K.-Y.
Williams ID.
Yeung L.-L.
Tetrahedron
1999,
55:
89
<A NAME="RS02407ST-15K">15k </A>
Procopiou PA.
Linn SM.
Roberts AD.
Tetrahedron
1999,
55:
3649
<A NAME="RS02407ST-15L">15l </A>
Olah GA.
Wang Q.
Li X.-y.
Rasul G.
Prakash GKS.
Macromolecules
1996,
29:
1857
<A NAME="RS02407ST-16A">16a </A>
Heydari A.
Fatemi P.
Alizadeh A.-A.
Tetrahedron Lett.
1998,
39:
3049
<A NAME="RS02407ST-16B">16b </A>
Kobayashi S.
Nagayama S.
Busujima T.
Tetrahedron Lett.
1996,
37:
9221
<A NAME="RS02407ST-16C">16c </A>
De S K.
J. Mol. Catal. A: Chem.
2005,
232:
123
<A NAME="RS02407ST-16D">16d </A>
Horenstein BA.
Nakanishi K.
J. Am. Chem. Soc.
1989,
111:
6242
<A NAME="RS02407ST-16E">16e </A>
Mulzer J.
Meier A.
Buschmann J.
Luger P.
Synthesis
1996,
123
<A NAME="RS02407ST-16F">16f </A>
De S K.
Synth. Commun.
2005,
35:
653
<A NAME="RS02407ST-16G">16g </A>
De S K.
Gibbs RA.
Tetrahedron Lett.
2004,
45:
7407
<A NAME="RS02407ST-16H">16h </A>
Yadav JS.
Reddy BVS.
Eshwaraiah B.
Sreenivas M.
Tetrahedron
2004,
60:
1767
<A NAME="RS02407ST-16I">16i </A>
Martínez R.
Ramón DJ.
Yus M.
Tetrahedron Lett.
2005,
46:
8471
<A NAME="RS02407ST-16J">16j </A>
Chen W.-Y.
Lu J.
Synlett
2005,
2293
<A NAME="RS02407ST-17A">17a </A>
Yadav JS.
Reddy BVS.
Eshwaraiah B.
Sreenivas M.
Vishnumurthy P.
New J. Chem.
2003,
27:
462
<A NAME="RS02407ST-17B">17b </A>
Royer L.
De S K.
Gibbs RA.
Tetrahedron Lett.
2005,
46:
4595 ; and references cited therein
<A NAME="RS02407ST-17C">17c </A>
Kobayashi S.
Busujima T.
Nagayama S.
Chem. Commun.
1998,
981
<A NAME="RS02407ST-18A">18a </A>
Kirsch P.
Modern Fluoroorganic Chemistry
Wiley-VCH;
Weinheim:
2004.
<A NAME="RS02407ST-18B">18b </A>
Chambers RD.
Fluorine in Organic Chemistry
Blackwell;
Oxford:
2004.
<A NAME="RS02407ST-18C">18c </A>
Smart RE.
Banks BE.
Tatlow JC.
Organofluorine Chemistry: Principles and Commercial Applications
Plenum;
New York:
1994.
<A NAME="RS02407ST-18D">18d </A>
Welch JT.
Eswarakrishnan S.
Fluorine in Bioorganic Chemistry
Wiley;
New York:
1991.
<A NAME="RS02407ST-18E">18e </A>
Ojima I.
McCarthy JR.
Welch JT.
Biomedical Frontiers of Fluorine Chemistry
ACS Symposium Series 639, American Chemical Society;
Washington DC:
1996.
<A NAME="RS02407ST-18F">18f </A>
Banks RE.
Organofluorine Chemicals and their Industrial Applications
Ellis Harwood;
New York:
1979.
<A NAME="RS02407ST-18G">18g </A>
Peters R.
Carbon-Fluorine Compounds Chemistry, Biochemistry and Biological Activities
Ciba Foundation Symposium, Elsevier;
Amsterdam:
1972.
<A NAME="RS02407ST-18H">18h </A>
Walsh CT.
Annu. Rev. Biochem.
1984,
53:
493
<A NAME="RS02407ST-19">19 </A>
General Procedure for the Strecker Reaction of Aldehydes and Ketones
Aldehyde or ketone (2 mmol)/fluorinated ketone (3 mmol), amine (2 mmol), TMSCN (3
mmol), and TMSOTf (5 mol%) were taken in CH2 Cl2 (5 mL) in a sealed pressure tube and the reaction mixture was stirred at r.t. for
several hours. Completion of the reaction was monitored by NMR. After completion,
the reaction mixture was quenched with H2 O and then extracted with CH2 Cl2 (3 × 15 mL). All the organic layers were collected, washed with brine solution, and
dried over anhyd Na2 SO4 . Removal of the solvent under reduced pressure provided the crude products. The crude
product was triturated with excess hexanes for several times and removal of the solvents
under reduced pressure afforded the Strecker product (α-aminonitriles) in almost analytically
pure form (by NMR). The products were characterized by analyzing their spectral data
and comparing them with those of the authentic samples (see supporting information,
which is available from the authors, and ref. 10).