Rofo 2019; 191(05): 433-441
DOI: 10.1055/a-0755-2374
Experimental Radiology
© Georg Thieme Verlag KG Stuttgart · New York

Artifact Properties of Dental Ceramic and Titanium Implants in MRI

Artikel in mehreren Sprachen: English | deutsch
Margit-Ann Geibel
1   Oral and Maxillofacial Surgery, Ulm-University, Ulm Germany
,
Benjamin Gelißen
2   Dental Office Benjamin Gelißen, Schwerin, Germany
,
Anna-Katinka Bracher
3   Internal Medicine II, Ulm-University, Ulm, Germany
,
Volker Rasche
3   Internal Medicine II, Ulm-University, Ulm, Germany
› Institutsangaben
Weitere Informationen

Publikationsverlauf

21. Dezember 2017

19. September 2018

Publikationsdatum:
12. November 2018 (online)

Abstract

Aim Assessment of the visualization of titanium and ceramic dental implants using various isotropic three-dimensional magnetic resonance imaging (MRI) methods.

Materials and Methods 21 dental implants (7 ceramic, 14 titanium) were scanned in vitro with a spatially isotropically resolved three-dimensional gradient echo (FFE), a turbo spin echo (SE) and an ultra-short-echo time (UTE) imaging technique. The resulting absolute volumes of the implants were quantified and the relative error to the theoretical volume was calculated.

Results Ceramic implants and their periphery could be displayed well in all cases. The observed mean relative error results were 5.4 ± 2.3 % (UTE) to 6.5 ± 4.3 % (FFE). No significant difference was observed between the investigated MRI methods. The transition between implant and surrounding agarose could be shown in all cases without artifacts. Titanium implants resulted in mean relative errors between 1314 ± 350 % (FFE) and 2157 ± 810 % (SE). Here, significant differences were observed between the FFE and the SE and between the UTE and the SE sequence. The periphery of the implants could not be displayed in any case.

Conclusion Use of the MRI technique for the diagnosis of peri-implantitis, the assessment of anatomical structures and planning of dental implantation is currently very limited but could be used more frequently, provided there are no disturbing or imaging-disturbing materials in the region of interest. MRI technology is not suitable in case of titanium implants. When using ceramic implants, MRI technology is an option.

Key points

  • MRI allows the artifact-free depiction of dental ceramic implants.

  • Titanium implants cause the greatest relative errors in SE techniques.

  • The UTE technique shows no significant improvements with respect to artifact behavior over the FFE technique.

Citation Format

  • Geibel M, Gelißen B, Bracher A et al. Artefakt-Verhalten von dentalen Keramik- und Titanimplantaten im MRT. Fortschr Röntgenstr 2019; 191: 433 – 441

 
  • References

  • 1 Jordan AR, Micheelis W. Fünfte Deutsche Mundgesundheitsstudie (DMS V). Materialienreihe Bd. 35, Institut der Deutschen Zahnärzte (Hrsg.),. Köln: Deutscher Zahnärzte Verlag DÄV; 2016
  • 2 Schwenzer N, Ehrenfeld M. Chirurgische Grundlagen. 4. Aufl. Stuttgart: Thieme; 2008: 118-165 . doi:10.1055/b-00000021
  • 3 Scherer P, Neugebauer J, Ritter L. et al. Indikationen für die 3-dimensionale Bildgebung in der Zahnheilkunde. ZWR 2007; 116: 219-230 . doi:10.1055/s-2007-983917
  • 4 Schulze R. DVT-Diagnostik in der Implantologie: Grundlagen-Fallstricke. ZMK Zahnheilkunde, Management, Kultur (15.02.2011). Im Internet: https://www.zmk-aktuell.de/fachgebiete/implantologie/story/dvt-diagnostik-in-der-implantologie-grundlagen--fallstricke__404.html . Stand: 03.02.2017
  • 5 Geibel MA, Schreiber E, Bracher AK. et al. Characterisation of apical bone lesions: Comparison of MRI and CBCT with histological findings – a case series. Eur J Oral Implantol 2017; 10: 197-211
  • 6 Schwarz F, Becker J. Periimplantäre Infektionen – Ein Update zur Epidemiologie, Ätiologie, Diagnostik, Prävention und Therapie. Implantologie 2015; 23: 247-259
  • 7 Mombelli A, Lang NP. (1998). The diagnosis and treatment of peri-implantitis. Periodontology 2000; 17: 63-76 . doi:10.1111/j.1600-0757.1998.tb00124.x
  • 8 Schwarz F, Becker J. Die Behandlung periimplantärer Infektionen an Zahnimplantaten. S3-Leitlinie (Langversion). AWMF-Registernr. 083-023. 2016: 5-14
  • 9 Geibel MA, Schreiber ES, Bracher AK. et al. Assessment of apical periodontitis by MRI: a feasibility study. Rofo 2015; Apr 187: 269-275
  • 10 Abbaszadeh K, Heffez LB, Mafee MF. Effect of interference of metallic objects on interpretation of T1-weighted magnetic resonance images in the maxillofacial region. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2000; 89: 759-765
  • 11 Costa AL, Appenzeller S, Yasuda CL. et al. Artifacts in brain magnetic resonance imaging due to metallic dental objects. Medicina Oral Patologia Oral Y Cirugia Bucal 2009; 14: 278-282
  • 12 Gray CF, Redpath TW, Smith FW. et al. Advanced imaging: Magnetic resonance imaging in implant dentistry. Clin Oral Implants Res 2003; 14: 18-27 . doi:10.1034/j.1600-0501.2003.140103.x
  • 13 Harris TMJ, Faridrad MR, Dickson JAS. The Benefits of Aesthetic Orthodontic Brackets in Patients Requiring Multiple MRI Scanning. J Orthod 2006; 33: 90-94 . doi: 10.1179/146531205225021465
  • 14 Hilgenfeld T, Prager M, Schwindling FS. et al. Artefacts of implant-supported single crowns – Impact of material composition on artefact volume on dental MRI. Eur J Oral Implantol 2016; 3: 301-308
  • 15 Shafiei F, Honda E, Takahashi H. et al. Artifacts from Dental Casting Alloys in Magnetic Resonance Imaging. J Dent Res 2003; 82: 602-606 . doi: 10.1177/154405910308200806
  • 16 Cortes AR, Abdala-Junior R, Weber M. et al. Influence of pulse sequence parameters at 1.5 T and 3.0 T on MRI artefacts produced by metal-ceramic restorations. Dentomaxillofac Radiol 2015; 44: 20150136 . doi: 10.1259/dmfr.20150136. Epub 2015 Jun 18. PubMed PMID: 26084475; PubMed Central PMCID: PMC4628425
  • 17 Burchardt DV, Borysewicz-Lewicka M. Disturbing effect of different dental materials on the MRI results: preliminary study. Acta Bioeng Biomech 2013; 15: 49-55 . PubMed PMID: 24479695
  • 18 Tymofiyeva O, Vaegler S, Rottner K. et al. Influence of dental materials on dental MRI. Dentomaxillofac Radiol 2013; 42: 20120271 . doi: 10.1259/dmfr.20120271. Epub 2013 Apr 22. PubMed PMID: 23610088; PubMed Central PMCID: PMC3667526
  • 19 Eggers G, Rieker M, Kress B. et al. Artefacts in magnetic resonance imaging caused by dental material. Magnetic Resonance Materials in Physics, Biology and Medicine/MAGMA 2005; 18: 103-111 . doi:10.1007/s10334-005-0101-0
  • 20 Suh JS, Jeong EK, Shin KH. et al. Minimizing artifacts caused by metallic implants at MR imaging: experimental and clinical studies. Am J Roentgenol 1998; 171: 1207-1213 . doi:10.2214/ajr.171.5.9798849
  • 21 Bracher AK, Hofmann C, Bornstedt A. et al. Ultrashort echo time (UTE) MRI for the assessment of caries lesions. Dentomaxillofac Radiol 2013; 42: 20120321 . doi: 10.1259/dmfr.20120321. Epub 2013 Feb 18
  • 22 Shellock FG, Kanal E, Yasargil ■. Aneurysm clips: evaluation of interactions with a 1.5-T MR system. Radiol 1998; 207: 587-591 . doi:10.1148/radiology.207.3.9609877
  • 23 Wang W, Jiang B, Wu X. et al. Influences of three types of dental ceramic alloys on magnetic resonance imaging. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 2010; 32: 276-279 . doi:10.3881/j.issn.1000-503X.2010.03.008
  • 24 Köhler SG. Risiken, Fehler und Komplikationen. Implantologie 2008; 32: 12-18
  • 25 Hassfeld S, Streib S, Sahl H. et al. Low-dose-Computertomografie des Kieferknochens in der präimplantologischen Diagnostik. Mund Kiefer Gesichts Chir 1998; 2: 188-193 . doi:10.1007/s100060050057
  • 26 Brüllmann D, Schulze R. Zukünftige Entwicklungen in der digitalen dentalen Volumentomografie–Teil 2. Apollonia: 2011. 12: 00
  • 27 Duttenhoefer F, Mertens ME, Vizkelety J. et al. Magnetic resonance imaging in zirconia-based dental implantology. Clin Oral Implants Res 2014; 00: 1-8 . doi: 10.1111/clr.12430
  • 28 Schulze R. Aktueller Stand der digitalen Röntgentechnik. ZM 2006; 96: 42
  • 29 Cortes AR, Abdala-Junior R, Weber M. et al. Influence of pulse-sequence parameters at 1. 5 T and 3.0 T on MRI artefacts produced by metal-ceramic restorations. Dentomaxillofac. Radiol 2015; 44: 20150136. doi: 10.1259/dmfr.20150136
  • 30 Xu Y, Yu R. Comparison of magnetic resonance imaging artifacts of five common dental materials. Hua xi kou Qiang yi xue za zhi 2015; 33: 230-233
  • 31 Idiyatullin D, Corum C, Moeller S. et al. Dental Magnetic Resonance Imaging: Making the Invisible Visible. J Endod 2011; 37: 745-752 . doi: 10.1016/j.joen.2011.02.022
  • 32 Hubálková H, Hora K, Seidl Z. et al. Dental materials and magnetic resonance imaging. Eur J Prosthodont Restor Dent 2002; 10: 125-130
  • 33 Tutton L, Goddard P. MRI of the teeth. Br J Radiol 2002; 75: 552-562 . doi: 10.1259/bjr.75.894.750552
  • 34 Siddiqi A, Payne AGT, De Silva RK. et al. Titanium allergy: could it affect dental implant integration. Clin Oral Implants Res 2011; 22: 673-680 . doi:10.1111/j.1600-0501.2010.02081.x
  • 35 Assal P. The Osseointegration of Zirconia Dental Implants. Schweiz Monatsschr Zahnmed 2012; 123: 644-654
  • 36 Hisbergues M, Vendeville S, Vendeville P. Zirconia. Established facts and perspectives for a biomaterial in dental implantology. J Biomed Mater Res B Appl Biomater 2009; 88: 519-529 . doi:10.1002/jbm.b.31147
  • 37 Hoffmann O, Angelov N, Zafiropoulos G. et al. Osseointegration of zirconia implants with different surface characteristics: an evaluation in rabbits. Int J Oral Maxillofac Implants 2012; 27: 352-358
  • 38 Muddugangadhar BC, Amarnath GS, Tripathi S. et al. Biomaterials for dental implants: An overview. Intern J Oral Impl Clin Res 2011; 2: 13-24
  • 39 Stadlinger B, Hennig M, Eckelt U. et al. Comparison of zirconia and titanium implants after a short healing period. A pilot study in minipigs. Int J Oral Maxillofac Surg 2010; 39: 585-592 . doi:10.1016/j.ijom.2010.01.015
  • 40 Matsuura H, Inoue T, Konno H. et al. Quantification of susceptibility artifacts produced on high-field magnetic resonance images by various biomaterials used for neurosurgical implants. J Neurosurg 2002; 97: 1472-1475 . doi: 10.3171/jns.2002.97.6.1472