Subscribe to RSS
DOI: 10.1055/a-0826-4789
Künstliche Intelligenz und Maschinelles Lernen
Artificial intelligence and machine learningPublication History
10/18/2018
12/15/2018
Publication Date:
20 February 2019 (online)
Zusammenfassung
Maschinelles Lernen (ML), ein Teilbereich der Künstlichen Intelligenz, ist die Fähigkeit von Computer-Algorithmen, Wissen aus Beispielen zu lernen, ohne dafür explizit programmiert zu sein und dieses Wissen dann auf unbekannte Fälle anzuwenden. Die Anwendung von ML in der Medizin wird in den nächsten Jahren exponentiell zunehmen. Ärzte sollten daher über die prinzipiellen Arten von ML sowie den Prozess des ML grundlegende Kenntnisse haben. Denn nur so ist es möglich, ML optimal zu nutzen und die Grenzen und Probleme des Verfahrens zu erkennen.
Abstract
Machine learning (ML) is the ability of computers to learn from data without being programmed explicitly for that purpose, and to apply the acquired knowledge to unknown cases. The application of ML in medicine will increase exponentially in the years to come. Doctors should have some basic knowledge of ML. Only then will they be able to use ML optimally and to recognise the limits and difficulties of ML.
-
Literatur
- 1 McCarthy J, Minsky ML, Rochester N. et al. A proposal for the Dartmouth summer research project on artificial intelligence. AI Mag [Internet] 2006; 27: 12-14 Available from: http://www.aaai.org/ojs/index.php/aimagazine/article/view/1904%5Cnhttp://www.mendeley.com/catalog/proposal-dartmouth-summer-research-project-artificial-intelligence-august-31–1955/%5Cnhttp://www-formal.stanford.edu/jmc/history/dartmouth/dartmouth.html
- 2 Darcy AM, Louie AK, Roberts LW. Machine learning and the profession of medicine. JAMA 2016; 315: 551-552
- 3 Gulshan V, Peng L, Coram M. et al. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA 2016; 304: 649-656
- 4 Motwani M, Dey D, Berman DS. et al. Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease : a 5-year multicentre prospective registry analysis. Eur Heart J 2017; 38: 500-507
- 5 Lötsch J, Thrun M, Lerch F. et al. Machine-Learned Data Structures of Lipid Marker Serum Concentrations in Multiple Sclerosis Patients Differ from Those in Healthy Subjects. Int J Mol Sci 2017; 18: 1217
- 6 https://www.kaggle.com/uciml/pima-indians-diabetes-database
- 7 Osinga R, Baust D, Bodmer ES. et al. Subjektive und objektive Langzeitanalyse nach Mammareduktionsplastik in 159 Fällen: Patientinnen urteilen anders als Plastische Chirurgen. Handchir Mikrochir Plast Chir 2017; 49: 399-404
- 8 Zimmermann RM, Parayvi E, Zimmermann NB. et al. Complications after hand surgery in patients with a raised International Normalized Ratio. J Hand Surg 2017; 42: 742-746
- 9 Oskoei MA, Hu H. Support Vector Machine-Based Classification Scheme for Myoelectric Control Applied to Upper Limb. IEEE Transactions on Biomedical Eng 2005; 55: 1956-1965
- 10 Olczak J, Fahlberg N, Maki A. et al. Artificial intelligence for analyzing orthopedic trauma radiographs. Acta Orthopaedica 2017; 88: 581-586
- 11 Kiranantawat K, Sitpahul N, Taeprasartsit P. et al. The first Smartphone application for microsurgery monitoring: SilpaRamanitor. Plast Reconstr Surg 2014; 134: 130-139
- 12 Yeong EK, Hsiao TC, Chiang HK. et al. Prediction of burn healing time using artificial neural networks and reflectance spectrometer. Burns 2005; 31: 415-420
- 13 Hahn P, Cenik E, Prommersberger KJ. et al. Machine learning as a tool for predicting insincere effort in power grips. bioXRiv. 2016 DOI: doi:http://dx.doi.org/10.1101/068494
- 14 Mühldorfer-Fodor M, Reger A, Pillukat T. et al. Auswirkungen der Versteifung des Zeigefinger- bzw. Mittelfingerendgelenkes auf Hand- und Fingerkraft sowie auf die Druckverteilung. Handchir Mikrochir Plast Chir 2018; 50: 174-183
- 15 http://www.minds-medical.de
- 16 William W, Basaza-Ejiri AH, Obungoloch J. et al. A Review of Applications of Image Analysis and Machine Learning Techniques in Automated Diagnosis and Classification of Cervical Cancer from Pap-smear Images. IST-Africa Week Conference (IST-Africa); Gaborone: 2018: 11
- 17 https://leanpub.com/universities/set/jhu/chromebook-data-science