Rofo 2019; 191(12): 1091-1098
DOI: 10.1055/a-0889-8605
Pediatric Radiology
© Georg Thieme Verlag KG Stuttgart · New York

Strain Ultrasound Elastography of Muscles in Healthy Children and Healthy Adults

Article in several languages: English | deutsch
Helena Wenz
1   Section of Pediatric Radiology, Institute of Diagnostic and Interventional Radiology, University-Hospital Jena, Germany
,
Andrea Dieckmann
2   Department of Pediatric Neurology, University-Hospital Jena, Germany
,
Thomas Lehmann
3   Institute of Medical Statistics, Computer Sciences and Documentation, University-Hospital Jena, Germany
,
Ulrich Brandl
2   Department of Pediatric Neurology, University-Hospital Jena, Germany
,
Hans-Joachim Mentzel
1   Section of Pediatric Radiology, Institute of Diagnostic and Interventional Radiology, University-Hospital Jena, Germany
› Author Affiliations
Further Information

Publication History

12 October 2018

04 March 2019

Publication Date:
29 April 2019 (online)

Abstract

Purpose Standardized application and evaluation of the strain ultrasound elastography method (USE) by means of a strain color scale (SCS) and a strain ratio analysis. To determine differences in muscle elasticity in healthy children and adults.

Materials and Methods Initially Mm. biceps brachii, Mm. recti femoris and Mm. gastrocnemii of 22 healthy adults were examined before and after exercise. Secondly measurements were obtained at rest in 21 healthy children.

Results There was a difference in muscle elasticity between the upper and lower extremity. Muscle elasticity tends to be higher after exercise in healthy adults. SCS and strain ratio analysis show a similar trend. In comparison to adults, healthy children show lower muscle elasticity at rest using both analysis methods.

Conclusion Strain elastography is an easy to perform, cost-effective, non-invasive method to determine muscle stiffness, if the conditions of standardized measurements are given.

Key Points:

  • It is possible to perform standardized measurements with the strain elastography method in healthy adults and children

  • Strain color scale as well as strain ratio analysis are appropriate tools to interpret the elastogrammes

  • strain elastography shows higher elasticity in adults’ muscles after exercise

  • strain elastography shows higher elasticity in adults’ muscles than in muscles of healthy children

Citation Format

  • Wenz H, Dieckmann A, Lehmann T et al. Strain Ultrasound Elastography of Muscles in Healthy Children and Healthy Adults. Fortschr Röntgenstr 2019; 191: 1091 – 1098

 
  • References

  • 1 Stenzel M, Mentzel HJ. Ultrasound elastography and contrast-enhanced ultrasound in infants, children and adolescents. European journal of radiology 2014; 83: 1560-1569 . doi:10.1016/j.ejrad.2014.06.007
  • 2 Brandenburg JE, Eby SF, Song P. et al. Ultrasound elastography: the new frontier in direct measurement of muscle stiffness. Archives of physical medicine and rehabilitation 2014; 95: 2207-2219 . doi:10.1016/j.apmr.2014.07.007
  • 3 Lorenzen J, Sinkus R, Adam G. Elastography: Quantitative imaging modality of the elastic tissue properties. RoFo: Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin 2003; 175: 623-630 . doi:10.1055/s-2003-39199
  • 4 Drakonaki EE, Allen GM, Wilson DJ. Ultrasound elastography for musculoskeletal applications. The British journal of radiology 2012; 85: 1435-1445 . doi:10.1259/bjr/93042867
  • 5 Yanagisawa O, Niitsu M, Kurihara T. et al. Evaluation of human muscle hardness after dynamic exercise with ultrasound real-time tissue elastography: a feasibility study. Clinical radiology 2011; 66: 815-819 . doi:10.1016/j.crad.2011.03.012
  • 6 Niitsu M, Michizaki A, Endo A. et al. Muscle hardness measurement by using ultrasound elastography: a feasibility study. Acta radiologica (Stockholm, Sweden: 1987) 2011; 52: 99-105 . doi:10.1258/ar.2010.100190
  • 7 Chino K, Akagi R, Dohi M. et al. Reliability and validity of quantifying absolute muscle hardness using ultrasound elastography. PloS one 2012; 7: e45764 . doi:10.1371/journal.pone.0045764
  • 8 Berko NS, Fitzgerald EF, Amaral TD. et al. Ultrasound elastography in children: establishing the normal range of muscle elasticity. Pediatric radiology 2014; 44: 158-163 . doi:10.1007/s00247-013-2793-z
  • 9 Koschack J. Standard Deviation and Standard Error: the Small But Important Difference Standardabweichung und Standardfehler: Der kleine, aber feine Unterschied. Allg Med 2008; 84: 258-260
  • 10 Lange S, Bender R. Median oder Mittelwert?. Dtsch med Wochenschr 2007; 132: e1-e2 . doi:10.1055/s-2007-959024
  • 11 Cohen J. A power primer. Psychological bulletin 1992; 112: 155-159
  • 12 De Zordo T, Chhem R, Smekal V. et al. Real-time sonoelastography: findings in patients with symptomatic achilles tendons and comparison to healthy volunteers. Ultraschall in der Medizin (Stuttgart, Germany: 1980) 2010; 31: 394-400 . doi:10.1055/s-0028-1109809
  • 13 Inami T, Tsujimura T, Shimizu T. et al. Relationship between isometric contraction intensity and muscle hardness assessed by ultrasound strain elastography. European journal of applied physiology 2017; 117: 843-852 . doi:10.1007/s00421-016-3528-2
  • 14 Kwon DR, Park GY. Diagnostic value of real-time sonoelastography in congenital muscular torticollis. Journal of ultrasound in medicine: official journal of the American Institute of Ultrasound in Medicine 2012; 31: 721-727
  • 15 Ewertsen C, Carlsen JF, Christiansen IR. et al. Evaluation of healthy muscle tissue by strain and shear wave elastography – Dependency on depth and ROI position in relation to underlying bone. Ultrasonics 2016; 71: 127-133 . doi:10.1016/j.ultras.2016.06.007
  • 16 Martino F, Silvestri E, Grassi W. et al. Musculoskeletal Sonography. Springer Verlag; 2007
  • 17 Ooi CC, Malliaras P, Schneider ME. et al. “Soft, hard, or just right?” Applications and limitations of axial-strain sonoelastography and shear-wave elastography in the assessment of tendon injuries. Skeletal radiology 2014; 43: 1-12 . doi:10.1007/s00256-013-1695-3
  • 18 Lorenzen J, Sinkus R, Adam G. Elastographie: Quantitative Bildgebung der elastischen Gewebeeigenschaften. Fortschr Röntgenstr 2003; 175: 623-630
  • 19 Drakonaki EE, Allen GM. Magnetic resonance imaging, ultrasound and real-time ultrasound elastography of the thigh muscles in congenital muscle dystrophy. Skeletal radiology 2010; 39: 391-396 . doi:10.1007/s00256-009-0861-0
  • 20 Drakonaki EE, Allen GM, Wilson DJ. Real-time ultrasound elastography of the normal Achilles tendon: reproducibility and pattern description. Clinical radiology 2009; 64: 1196-1202 . doi:10.1016/j.crad.2009.08.006
  • 21 Gennisson JL, Deffieux T, Mace E. et al. Viscoelastic and anisotropic mechanical properties of in vivo muscle tissue assessed by supersonic shear imaging. Ultrasound in medicine & biology 2010; 36: 789-801 . doi:10.1016/j.ultrasmedbio.2010.02.013
  • 22 Schünke M, Schult E, Schumacher U. et al. Prometheus-Allgemeine Anatomie und Bewegungssystem. 2007
  • 23 Clifford PS, Tschakovsky ME. Rapid vascular responses to muscle contraction. Exerc Sport Sci Rev 2008; 36: 25-29 . doi:10.1097/jes.0b013e31815ddba4
  • 24 Miller AE, MacDougall JD, Tarnopolsky MA. et al. Gender differences in strength and muscle fiber characteristics. European journal of applied physiology and occupational physiology 1993; 66: 254-262
  • 25 Tschakovsky ME, Saunders NR, Webb KA. et al. Muscle blood-flow dynamics at exercise onset: do the limbs differ?. Medicine and science in sports and exercise 2006; 38: 1811-1818 . doi:10.1249/01.mss.0000230341.86870.4f
  • 26 Hadders-Algra M, Boxum AG, Hielkema T. et al. Effect of early intervention in infants at very high risk of cerebral palsy: a systematic review. Developmental medicine and child neurology 2016; DOI: 10.1111/dmcn.13331.
  • 27 Strassburg HM. Behandlungskonzept bei Kindern mit infantiler Zerebralparese. In: Leitlinien der Kinder- und Jugendmedizin, 2015; pp. R5.1 – R5.6. DOI:10.1016/B978-3-437-22061-6.50584-X https://www.dgspj.de/wp-content/uploads/service-archiv-leitlinie-icp-2004.pdf