Diabetologie und Stoffwechsel 2019; 14(05): 388-398
DOI: 10.1055/a-0978-4537
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Neue Therapieoptionen mit kontinuierlich gemessenen Glukosedaten – Empfehlungen für die Praxis

Novel Therapeutic Options with Continuous Glucose Monitoring – Practical Recommendations
Jochen Seufert
1   Klinik für Innere Medizin II, Abteilung Endokrinologie und Diabetologie, Universitätsklinikum Freiburg, Germany
,
Dorothee Deiss
2   Berlin-Mitte, Medicover, Berlin, Germany
,
Stefan Gölz
3   Diabetes Schwerpunktpraxis, Esslingen, Germany
,
Thomas Haak
4   Bad Mergentheim, Diabetes-Klinik, Bad Mergentheim, Germany
,
Gerhard Klausmann
5   Dres. Klausmann, Gemeinschaftspraxis, Aschaffenburg, Germany
,
Jens Kroeger
6   Diabetologie, Zentrum für Diabetologie Hamburg-Bergedorf, Hamburg, Germany
,
Ralf Lobmann
7   Klinik für Endokrinologie, Diabetologie und Geriatrie, Klinikum Stuttgart, Krankenhaus Bad Cannstatt, Stuttgart, Germany
,
Andreas F.H. Pfeiffer
8   Klinik für Endokrinologie, Stoffwechsel- und Ernährungsmedizin, Charité – Universitätsmedizin Berlin, Germany
,
Oliver Schnell
9   Helmholtz Zentrum München, Forschergruppe Diabetes e. V., München-Neuherberg, Germany
,
Alexander Seibold
10   Abbott GmbH & Co. KG, Wiesbaden, Germany
,
Thorsten Siegmund
11   Diabetes-, Hormon- und Stoffwechselzentrum, Isarklinikum, München, Germany
,
Ralph Ziegler
12   Diabetologische Schwerpunktpraxis für Kinder und Jugendliche, Münster, Germany
› Author Affiliations
Further Information

Publication History

29 April 2019

17 July 2019

Publication Date:
31 July 2019 (online)

Zusammenfassung

Kontinuierliches Glukosemonitoring (Continuous Glucose Monitoring – CGM) ist heute fest in Konsensusempfehlungen und Leitlinien zur Verbesserung der glykämischen Kontrolle bei Menschen mit insulinpflichtigem Diabetes mellitus verankert. In der täglichen Praxis werden im Besonderen HbA1c, Glukosevariabilität und Hypoglykämien durch die Nutzung von CGM positiv beeinflusst. Der Stellenwert von CGM bei Therapieentscheidungen wächst und birgt weitere vielfältige Potenziale. Dieser Übersichtsartikel stellt dar, welche Therapieoptionen auf der Basis von CGM-Daten bestehen, wie das ambulante Glukoseprofil und Trendpfeile Therapieentscheidungen beeinflussen können und welche Schulungskonzepte für Patienten angeboten werden. Auch werden zukünftige Felder für die Anwendung von CGM erörtert und diskutiert.

Abstract

Continuous glucose monitoring (CGM) is now firmly anchored in consensus recommendations and guidelines for improving glycaemic control in people with insulin-treated diabetes mellitus. In daily practice, especially HbA1c, glucose variability and hypoglycaemia are positively affected by the use of CGM. The importance of utilisation of CGM for treatment decisions is growing and holds further broad potential. This review article outlines treatment options based on CGM-derived data, how the ambulatory glucose profile and trend arrows can influence therapy decisions, and what kinds of training programs are offered to patients. Also, future potential areas of use of CGM are outlined and discussed.

 
  • Literatur

  • 1 IDF Clinical Guidelines Task Force. Global Guideline for Type 2 Diabetes: Recommendations for Standard, Comprehensive, and Minimal Care. Diabet Med 2006; 23: 579-593
  • 2 Ceriello A, Colagiuri S. International Diabetes Federation Guideline for Management of Postmeal Glucose: a Review of Recommendations. Diabet Med 2008; 25: 1151-1156
  • 3 American Diabetes Association. Standards of Medical Care in Diabetes. Diabetes Care 2018; 41: 1-159
  • 4 Fonseca VA, Grunberger G, Anhalt H. et al. Continuous Glucose Monitoring: A Consensus Conference of the American Association of Clinical Endocrinologists and American College of Endocrinology. Endocr Pract 2016; 22: 1008-1021
  • 5 Grunberger G, Bailey T, Camacho PM. et al. Proceedings from the American Association of Clinical Endocrinologists and American College of Endocrinology Consensus Conference on Glucose Monitoring. Endocr Pract 2015; 21: 522-533
  • 6 Deutsche Diabetes Gesellschaft. S3 – Leitlinie Therapie des Typ-1-Diabetes. 2013, 20.03.2019, https://www.deutsche-diabetes-gesellschaft.de/fileadmin/Redakteur/Leitlinien/Evidenzbasierte_Leitlinien/2018/S3-LL-Therapie-Typ-1-Diabetes-Auflage-2-Langfassung-09042018.pdf
  • 7 Deutsche Diabetes Gesellschaft. Arbeitsgemeinschaft der wissenschaftlichen medizinischen Fachgesellschaften, S3-Leitlinie Diagnostik, Therapie und Verlaufskontrolle des Diabetes mellitus im Kindes- und Jugendalter. 2015, 20.03.2019, http://www.deutsche-diabetes-gesellschaft.de/fileadmin/Redakteur/Leitlinien/Evidenzbasierte_Leitlinien/2016/DM_im_Kinder-_und_Jugendalter-final-2016.pdf
  • 8 Deutsche Diabetes Gesellschaft. S2e-Leitlinie Diabetes und Straßenverkehr. 2017, 20.03.2019, https://www.deutsche-diabetes-gesellschaft.de/fileadmin/Redakteur/Leitlinien/Evidenzbasierte_Leitlinien/2017/Leitlinie_S2e_Diabetes_und_Stra%C3%9Fenverkehr_Endfassung.pdf
  • 9 Deutsche Diabetes Gesellschaft. AG Diabetes & Technologie, Stellungnahme der AGDT zum Einsatz von Blutglukosemessungen durch Messungen mit Systemen zum kontinuierlichen real-time Glukosemonitoring (rtCGM) oder CGM mit intermittieredem Scannen (iscCGM). 2016, 20.03.2019, https://www.diabetes-technologie.de/images/pdfs/AGDT_Stellungnahme_Replacement_20160130-L.pdf
  • 10 Institut für Qualität und Wirtschaftlichkeit im Gesundheitswesen. Leitliniensynopse für das DMP Diabetes mellitus Typ 1 – Abschlussbericht. 2018, 13.07.2018, https://www.iqwig.de/de/projekte-ergebnisse/projekte/versorgung/v16-02-leitlinienrecherche-zur-aktualisierung-des-dmp-diabetes-mellitus-typ-1.7708.html
  • 11 Deutsche Diabetes Gesellschaft. Arbeitsgemeinschaft Diabetes und Technologie, Aktualisierte Stellungnahme der DDG Arbeitsgemeinschaft Diabetes und Technologie (AGDT) zum Ersatz von Blutglukosemessungen durch Messungen mit Systemen zum kontinuierlichen real-time Glukosemonitoring (rtCGM) oder mit intermittierendem Scannen (iscCGM). 2019, 21.06.2019, https://www.deutsche-diabetes-gesellschaft.de/fileadmin/Redakteur/Stellungnahmen/2019/Stellungnahme_der_AGDT_2019_5_28_clean.pdf
  • 12 Liebl A, Henrichs HR, Heinemann L. et al. Continuous Glucose Monitoring: Evidence and Consensus Statement for Clinical Use. J Diabetes Sci Technol 2013; 7: 500-519
  • 13 Bailey TS, Grunberger G, Bode BW. et al. American Association of Clinical Endocrinologists and American College of Endocrinology 2016 Outpatient Glucose Monitoring Consensus Statement. Endocr Pract 2016; 22: 231-261
  • 14 Institut für Qualität und Wirtschaftlichkeit im Gesundheitswesen. [D12-01] Kontinuierliche interstitielle Glukosemessung (CGM) mit Real-Time-Messgeräten bei insulinpflichtigem Diabetes mellitus (Abschlussbericht). 2015, 20.11.2018, https://www.iqwig.de/de/projekte-ergebnisse/projekte/nichtmedikamentoese-verfahren/d12-01-kontinuierliche-interstitielle-glukosemessung-cgm-mit-real-time-messgeraten-bei-insulinpflichtigem-diabetes-mellitus.3258.html
  • 15 Lind M, Polonsky W, Hirsch IB. et al. Continuous Glucose Monitoring vs Conventional Therapy for Glycemic Control in Adults With Type 1 Diabetes Treated With Multiple Daily Insulin Injections: The GOLD Randomized Clinical Trial. JAMA 2017; 317: 379-387
  • 16 Beck RW, Riddlesworth T, Ruedy K. et al. Effect of Continuous Glucose Monitoring on Glycemic Control in Adults With Type 1 Diabetes Using Insulin Injections: The DIAMOND Randomized Clinical Trial. JAMA 2017; 317: 371-378
  • 17 Battelino T, Conget I, Olsen B. et al. The Use and Efficacy of Continuous Glucose Monitoring in Type 1 Diabetes Treated with Insulin Pump Therapy: a Randomised Controlled Trial. Diabetologia 2012; 55: 3155-3162
  • 18 Tamborlane WV, Beck RW, Bode BW. et al. Continuous Glucose Monitoring and Intensive Treatment of Type 1 Diabetes. N Engl J Med 2008; 359: 1464-1476
  • 19 van Beers CA, DeVries JH, Kleijer SJ. et al. Continuous Glucose Monitoring for Patients with Type 1 Diabetes and Impaired Awareness of Hypoglycaemia (IN CONTROL): a Randomised, Open-Label, Crossover Trial. Lancet Diabetes Endocrinol 2016; 4: 893-902
  • 20 Little SA, Leelarathna L, Walkinshaw E. et al. Recovery of Hypoglycemia Awareness in Long-Standing Type 1 Diabetes: A Multicenter 2 × 2 Factorial Randomized Controlled Trial Comparing Insulin Pump With Multiple Daily Injections and Continuous With Conventional Glucose Self-Monitoring (HypoCOMPaSS). Diabetes Care 2014; 37: 2114-2122
  • 21 Battelino T, Phillip M, Bratina N. et al. Effect of Continuous Glucose Monitoring on Hypoglycemia in Type 1 Diabetes. Diabetes Care 2011; 34: 795-800
  • 22 Ly TT, Nicholas JA, Retterath A. et al. Effect of Sensor-Augmented Insulin Pump Therapy and Automated Insulin Suspension vs Standard Insulin Pump Therapy on Hypoglycemia in Patients with Type 1 Diabetes: a Randomized Clinical Trial. JAMA Cardiol 2013; 310: 1240-1247
  • 23 Heinemann L, Freckmann G, Ehrmann D. et al. Real-Time Continuous Glucose Monitoring in Adults with Type 1 Diabetes and Impaired Hypoglycaemia Awareness or Severe Hypoglycaemia Treated with Multiple Daily Insulin Injections (HypoDE): a Multicentre, Randomised Controlled Trial. Lancet 2018; 391: 1367-1377
  • 24 Bolinder J, Antuna R, Geelhoed-Duijvestijn P. et al. Novel Glucose-Sensing Technology and Hypoglycaemia in Type 1 Diabetes: a Multicentre, Non-Masked, Randomised Controlled Trial. Lancet 2016; 388: 2254-2263
  • 25 Oskarsson P, Antuna R, Geelhoed-Duijvestijn P. et al. Impact of Flash Glucose Monitoring on Hypoglycaemia in Adults with Type 1 Diabetes Managed with Multiple Daily Injection Therapy: a Pre-Specified Subgroup Analysis of the IMPACT Randomised Controlled Trial. Diabetologia 2018; 61: 539-550
  • 26 Seibold A, Welsh Z, Ells S. et al. A Meta-analysis of Real-World Observational Studies on the Impact of Flash Glucose Monitoring on Glycemic Control as Measured by HbA1c. Diabetes 2018; 67: 72-LB
  • 27 Ehrmann D, Heinemann L, Freckmann G. et al. The Effects and Effect Sizes of Real-Time Continuous Glucose Monitoring on Patient-Reported Outcomes: A Secondary Analysis of the HypoDE Study. Diabetes Technol Ther 2019; 21: 86-93
  • 28 Polonsky WH, Hessler D, Ruedy KJ. et al. The Impact of Continuous Glucose Monitoring on Markers of Quality of Life in Adults With Type 1 Diabetes: Further Findings From the DIAMOND Randomized Clinical Trial. Diabetes Care 2017; 40: 736-741
  • 29 Charleer S, Mathieu C, Nobels F. et al. Effect of Continuous Glucose Monitoring on Glycemic Control, Acute Admissions, and Quality of Life: A Real-World Study. J Clin Endocrinol Metab 2018; 103: 1224-1232
  • 30 Danne T, Nimri R, Battelino T. et al. International Consensus on Use of Continuous Glucose Monitoring. 2017; 40: 1631-1640
  • 31 Haak T, Hanaire H, Ajjan R. et al. Flash Glucose-Sensing Technology as a Replacement for Blood Glucose Monitoring for the Management of Insulin-Treated Type 2 Diabetes: a Multicenter, Open-Label Randomized Controlled Trial. Diabetes Ther 2017; 8: 55-73
  • 32 Beck RW, Riddlesworth TD, Ruedy K. et al. Continuous Glucose Monitoring Versus Usual Care in Patients With Type 2 Diabetes Receiving Multiple Daily Insulin Injections: A Randomized Trial. Ann Intern Med 2017; 167: 365-374
  • 33 Ehrhardt NM, Chellappa M, Walker MS. et al. The Effect of Real-Time Continuous Glucose Monitoring on Glycemic Control in Patients with Type 2 Diabetes Mellitus. J Diabetes Sci Technol 2011; 5: 668-675
  • 34 Fonda SJ, Salkind SJ, Walker MS. et al. Heterogeneity of Responses to Real-Time Continuous Glucose Monitoring (RT-CGM) in Patients with Type 2 Diabetes and Its Implications for Application. Diabetes Care 2013; 36: 786-792
  • 35 Vigersky RA, Fonda SJ, Chellappa M. et al. Short- and Long-Term Effects of Real-Time Continuous Glucose Monitoring in Patients with Type 2 Diabetes. Diabetes Care 2012; 35: 32-38
  • 36 Bally L, Thabit H, Hartnell S. et al. Closed-Loop Insulin Delivery for Glycemic Control in Noncritical Care. N Engl J Med 2018; 379: 547-556
  • 37 Tauschmann M, Thabit H, Bally L. et al. Closed-Loop Insulin Delivery in Suboptimally Controlled Type 1 Diabetes: a Multicentre, 12-Week Randomised Trial. Lancet 2018; 392: 1321-1329
  • 38 The Diabetes Control and Complications Trial Research Group. Hypoglycemia in the Diabetes Control and Complications Trial. Diabetes 1997; 46: 271-286
  • 39 UK Prospective Diabetes Study Group. Tight Blood Pressure Control and Risk of Macrovascular and Microvascular Complications in Type 2 Diabetes: UKPDS 38. BMJ 1998; 317: 703-713
  • 40 Orchard TJ, Nathan DM, Zinman B. et al. Association Between 7 Years of Intensive Treatment of Type 1 Diabetes and Long-Term Mortality. JAMA 2015; 313: 45-53
  • 41 Holman RR, Paul SK, Bethel MA. et al. 10-Year Follow-Up of Intensive Glucose Control in Type 2 Diabetes. N Engl J Med 2008; 359: 1577-1589
  • 42 Study G, Gerstein HC, Miller ME. Action to Control Cardiovascular Risk in Diabetes. et al. Effects of Intensive Glucose Lowering in Type 2 Diabetes. N Engl J Med 2008; 358: 2545-2559
  • 43 Gerstein HC, Miller ME, Genuth S. et al. Long-Term Effects of Intensive Glucose Lowering on Cardiovascular Outcomes. N Engl J Med 2011; 364: 818-828
  • 44 Patel A, MacMahon S, Chalmers J. et al. Intensive Blood Glucose Control and Vascular Outcomes in Patients with Type 2 Diabetes. N Engl J Med 2008; 358: 2560-2572
  • 45 McCoy RG, Van Houten HK, Ziegenfuss JY. et al. Increased Mortality of Patients With Diabetes Reporting Severe Hypoglycemia. Diabetes Care 2012; 35: 1897-1901
  • 46 Bedenis R, Price AH, Robertson CM. et al. Association Between Severe Hypoglycemia, Adverse Macrovascular Events, and Inflammation in the Edinburgh Type 2 Diabetes Study. Diabetes Care 2014; 37: 3301-3308
  • 47 Khunti K, Davies M, Majeed A. et al. Hypoglycemia and Risk of Cardiovascular Disease and All-Cause Mortality in Insulin-Treated People With Type 1 and Type 2 Diabetes: A Cohort Study. Diabetes Care 2015; 38: 316-322
  • 48 Gorst C, Kwok CS, Aslam S. et al. Long-term Glycemic Variability and Risk of Adverse Outcomes: A Systematic Review and Meta-analysis. Diabetes Care 2015; 38: 2354-2369
  • 49 Smith-Palmer J, Brandle M, Trevisan R. et al. Assessment of the Association Between Glycemic Variability and Diabetes-Related Complications in Type 1 and Type 2 Diabetes. Diabetes Res Clin Pract 2014; 105: 273-284
  • 50 Kilpatrick ES, Rigby AS, Atkin SL. A1C Variability and the Risk of Microvascular Complications in Type 1 Diabetes: Data from the Diabetes Control and Complications Trial. Diabetes Care 2008; 31: 2198-2202
  • 51 Selvin E, Rawlings AM, Grams M. et al. Association of 1,5-Anhydroglucitol with Diabetes and Microvascular Conditions. Clin Chem 2014; 60: 1409-1418
  • 52 Zinman B, Marso SP, Poulter NR. et al. Day-to-Day Fasting Glycaemic Variability in DEVOTE: Associations with Severe Hypoglycaemia and Cardiovascular Outcomes (DEVOTE 2). Diabetologia 2018; 61: 48-57
  • 53 Sato H, Hosojima M, Ishikawa T. et al. Glucose Variability Based on Continuous Glucose Monitoring Assessment Is Associated with Postoperative Complications after Cardiovascular Surgery. Ann Thorac Cardiovasc Surg 2017; 23: 239-247
  • 54 Chiasson JL, Josse RG, Gomis R. et al. Acarbose for Prevention of Type 2 Diabetes Mellitus: the STOP-NIDDM Randomised Trial. Lancet 2002; 359: 2072-2077
  • 55 Holman RR, Coleman RL, Chan JCN. et al. Effects of Acarbose on Cardiovascular and Diabetes Outcomes in Patients with Coronary Heart Disease and Impaired Glucose Tolerance (ACE): a Randomised, Double-Blind, Placebo-Controlled Trial. Lancet Diabetes Endocrinol 2017; 5: 877-886
  • 56 The NAVIGATOR Study Group. Effect of Nateglinide on the Incidence of Diabetes and Cardiovascular Events. N Engl J Med 2010; 362: 1463-1476
  • 57 Rayman G. Glycaemic Control, Glucose Variability and the Triangle of Diabetes Care. The British Journal of Diabetes 2016; 16: S3-S6
  • 58 Agiostratidou G, Anhalt H, Ball D. et al. Standardizing Clinically Meaningful Outcome Measures Beyond HbA1c for Type 1 Diabetes: A Consensus Report of the American Association of Clinical Endocrinologists, the American Association of Diabetes Educators, the American Diabetes Association, the Endocrine Society, JDRF International, The Leona M. and Harry B. Helmsley Charitable Trust, the Pediatric Endocrine Society, and the T1D Exchange. Diabetes Care 2017; 40: 1622-1630
  • 59 Mazze R, Akkerman B, Mettner J. An Overview of Continuous Glucose Monitoring and the Ambulatory Glucose Profile. Minn Med 2011; 94: 40-44
  • 60 Bergenstal RM, Ahmann AJ, Bailey T. et al. Recommendations for Standardizing Glucose Reporting and Analysis to Optimize Clinical Decision Making in Diabetes: The Ambulatory Glucose Profile. J Diabetes Sci Technol 2013; 7: 562-578
  • 61 Fonseca V, Grunberger G. Standard Glucose Reporting: Follow-Up to the February 2016 AACE CGM Consensus Conference. Endocr Pract 2017; 23: 629-632
  • 62 Fonseca VA, Grunberger G, Anhalt H. et al. Continuous Glucose Monitoring: A Consensus of the American Association of Clinical Endocrinologists and American College of Endocrinology. Endocrine practice: official journal of the American College of Endocrinology and the American Association of Clinical Endocrinologists 2016; 22: 1008-1021
  • 63 Kröger J, Reichel A, Siegmund T. et al. Praxisbezogene Empfehlungen zum Ambulanten Glukoseprofil. Diabetologie und Stoffwechsel 2018; 13: 174-183
  • 64 Ziegler R, Siegmund T, Von Sengbusch S. et al. Therapieanpassungen mithilfe von Trendpfeilen bei kontinuierlichen Glukosemonitoring (CGM)-Systemen. Diabetologie und Stoffwechsel 2018; 13: 500-509
  • 65 Gehr B, Biermann E, Carstensen S. et al. Spectrum – Schulungs- und Behandlungsprogramm zur kontinuierlichen Glukosemessung (CGM) für Menschen mit Diabetes. Kirchheim Verlag; 2017
  • 66 Kulzer B, Hermanns N, Schnipfer M. et al. flash – Schulungs- und Behandlungsprogramm für Menschen, die Flash Glucose Monitoring benutzen. Kirchheim Verlag; 2017
  • 67 Hermanns N, Ehrmann D, Schipfer M. et al. The Impact of a Structured Education and Treatment Programme (FLASH) for People with Diabetes Using a Flash Sensor-Based Glucose Monitoring System: Results of a Randomized Controlled Trial. Diabetes Res Clin Pract 2019; 150: 111-121
  • 68 Nationale Versorgungsleitlinie. Diabetes: Strukturierte Schulungsprogramme. 2012, 21.01.2019, https://www.leitlinien.de/mdb/downloads/nvl/diabetes-mellitus/dm-schulungsprogramme-1aufl-vers4-lang.pdf
  • 69 Davies MJ, DʼAlessio DA, Fradkin J. et al. Management of Hyperglycemia in Type 2 Diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2018; 41: 2669-2701
  • 70 Carlson AL, Mullen DM, Bergenstal RM. Clinical Use of Continuous Glucose Monitoring in Adults with Type 2 Diabetes. Diabetes Technol Ther 2017; 19: S4-S11
  • 71 Sands AT, Zambrowicz BP, Rosenstock J. et al. Sotagliflozin, a Dual SGLT1 and SGLT2 Inhibitor, as Adjunct Therapy to Insulin in Type 1 Diabetes. Diabetes Care 2015; 38: 1181-1188
  • 72 Argento NB, Nakamura K. Glycemic Effects of SGLT-2 Inhibitor Canagliflozin in Type 1 Diabetes Patients using the Dexcom G4 Platinum CGM. Endocr Pract 2016; 22: 315-322
  • 73 Nishimura R, Tanaka Y, Koiwai K. et al. Effect of Empagliflozin Monotherapy on Postprandial Glucose and 24-Hour Glucose Variability in Japanese Patients with Type 2 Diabetes Mellitus: a Randomized, Double-Blind, Placebo-Controlled, 4-Week Study. Cardiovasc Diabetol 2015; 14: 11
  • 74 King AB, Philis-Tsimikas A, Kilpatrick ES. et al. A Fixed Ratio Combination of Insulin Degludec and Liraglutide (IDegLira) Reduces Glycemic Fluctuation and Brings More Patients with Type 2 Diabetes Within Blood Glucose Target Ranges. Diabetes Technol Ther 2017; 19: 255-264
  • 75 Gemeinsamer Bundesausschuss. Beschluss des Gemeinsamen Bundesausschusses über eine Änderung der Richtlinie Methoden vertragsärztliche Versorgung: Kontinuierliche interstitielle Glukosemessung mit Real-Time-Messgeräten (rtCGM) zur Therapiesteuerung bei Patientinnen und Patienten mit insulinpflichtigem Diabetes mellitus. 2016, 20.03.2019, https://www.g-ba.de/downloads/39-261-2623/2016-06-16_MVV-RL_rtCGM_BAnz.pdf
  • 76 Kröger J, Reichel A, Siegmund T. et al. AGP-Fibel Das Ambulante Glukoseprofil strukturiert auswerten. Mainz: Kirchheim Verlag; 2018