Rofo 2020; 192(03): 246-256
DOI: 10.1055/a-0999-5716
Review
© Georg Thieme Verlag KG Stuttgart · New York

Quantitative Clinical Cardiac Magnetic Resonance Imaging

Article in several languages: English | deutsch
Ursula Reiter
1   Radiology, Medical University of Graz, Austria
,
Clemens Reiter
1   Radiology, Medical University of Graz, Austria
,
Corina Kräuter
1   Radiology, Medical University of Graz, Austria
2   Institute of Medical Engineering, Graz University of Technology, Faculty of Computer Science and Biomedical Engineering, Graz, Austria
,
Volha Nizhnikava
1   Radiology, Medical University of Graz, Austria
3   Radiology, Respublican Science and Proctical Center of Cardiology, Minsk, Belarus
,
Michael H. Fuchsjäger
1   Radiology, Medical University of Graz, Austria
,
Gert Reiter
1   Radiology, Medical University of Graz, Austria
4   Research and Development, Siemens Healthcare Diagnostics GmbH, Austria
› Author Affiliations
Further Information

Publication History

08 April 2019

29 July 2019

Publication Date:
20 November 2019 (online)

Abstract

Background Cardiac magnetic resonance imaging (MRI) represents the established reference standard method for the assessment of cardiac function and non-invasive evaluation of myocardial tissue in a variety of clinical questions, wherein quantification of cardiac parameters gains growing diagnostic and differential-diagnostic importance. This review aims to summarize established and newly emerging quantitative parameters, which are assessed in routine cardiac MRI. Interrelations and interdependencies between metrics are explained, and common factors affecting quantitative results are discussed.

Method The review is based on a PubMed literature research using the search terms “cardiac magnetic resonance” and “quantification”, “recommendations”, “quantitative evaluation/assessment”, “reference method”, “reference/normal values”, “pitfalls” or “artifacts” published between 2000–2019.

Results and Conclusion Quantitative functional, phase contrast, and perfusion imaging, as well as relaxation time mapping techniques give opportunity for assessment of a large number of quantitative cardiac MRI parameters in clinical routine. Application of these techniques allows for characterization of function, morphology and perfusion of the heart beyond visual analysis of images, either in primary evaluation and comparison to normal values or in patients’ follow-up and treatment monitoring. However, with implementation of quantitative parameters in clinical routine, standardization is of particular importance as different acquisition and evaluation strategies and algorithms may substantially influence results, though not always immediately apparent.

Key Points:

  • Clinical cardiac MRI provides numerous functional and morphological quantitative parameters.

  • Quantitative cardiac MRI enables assessment of diffuse and global myocardial alterations.

  • Standardized data acquisition/evaluation is the prerequisite for diagnostic use of quantitative cardiac MRI parameters.

Citation Format

  • Reiter U, Reiter C, Kräuter C et al. Quantitative Clinical Cardiac Magnetic Resonance Imaging. Fortschr Röntgenstr 2020; 192: 246 – 256

 
  • Literatur

  • 1 Kramer CM, Barkhausen J, Flamm SD. et al. Society for Cardiovascular Magnetic Resonance Board of Trustees Task Force on Standardized Protocols. Standardized cardiovascular magnetic resonance (CMR) protocols 2013 update. J Cardiovasc Magn Reson 2013; 15: 91 . doi:10.1186/1532-429X-15-91
  • 2 Puntmann VO, Valbuena S, Hinojar R. et al. Society for Cardiovascular Magnetic Resonance (SCMR) expert consensus for CMR imaging endpoints in clinical research: part I – analytical validation and clinical qualification. J Cardiovasc Magn Reson 2018; 20: 67 . doi:10.1186/s12968-018-0484-5
  • 3 Peterzan MA, Rider OJ, Anderson LJ. The Role of Cardiovascular Magnetic Resonance Imaging in Heart Failure. Card Fail Rev 2016; 2: 115-122 . doi:10.15420/cfr.2016.2.2.115
  • 4 Schulz-Menger J, Bluemke DA, Bremerich J. et al. Standardized image interpretation and post processing in cardiovascular magnetic resonance: Society for Cardiovascular Magnetic Resonance (SCMR) board of trustees task force on standardized post processing. J Cardiovasc Magn Reson 2013; 15: 35,429X-15-35 . doi:10.1186/1532-429X-15-35
  • 5 Fratz S, Chung T, Greil GF. et al. Guidelines and protocols for cardiovascular magnetic resonance in children and adults with congenital heart disease: SCMR expert consensus group on congenital heart disease. J Cardiovasc Magn Reson 2013; 15: 51,429X-15-51 . doi:10.1186/1532-429X-15-51
  • 6 Messroghli DR, Moon JC, Ferreira VM. et al. Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: A consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI). J Cardiovasc Magn Reson 2017; 19: 75,017-0389-8 . doi:10.1186/s12968-017-0408-9
  • 7 Merz CN, Pepine CJ, Walsh MN. et al. Ischemia and No Obstructive Coronary Artery Disease (INOCA): Developing Evidence-based Therapies and Research Agenda for the Next Decade. Circulation 2017; 135: 1075-1092 . doi:10.1161/CIRCULATIONAHA.116.024534
  • 8 Robinson AA, Salerno M, Kramer CM. Contemporary Issues in Quantitative Myocardial Perfusion CMR Imaging. Current Cardiovascular Imaging Reports 2019; 12: 9 . doi:10.1007/s12410-019-9484-6
  • 9 Kawel-Boehm N, Maceira A, Valsangiacomo-Buechel ER. et al. Normal values for cardiovascular magnetic resonance in adults and children. J Cardiovasc Magn Reson 2015; 17: 29,015-0111-7 . doi:10.1186/s12968-015-0111-7
  • 10 Ridgway JP. Cardiovascular magnetic resonance physics for clinicians: part I. J Cardiovasc Magn Reson 2010; 12: 71 . doi:10.1186/1532-429X-12-71
  • 11 Biglands JD, Radjenovic A, Ridgway JP. Cardiovascular magnetic resonance physics for clinicians: Part II. J Cardiovasc Magn Reson 2012; 14: 66 . doi:10.1186/1532-429X-14-66
  • 12 Krishnamurthy R, Cheong B, Muthupillai R. Tools for cardiovascular magnetic resonance imaging. Cardiovasc Diagn Ther 2014; 4: 104-125 . doi:10.3978/j.issn.2223-3652.2014.03.06
  • 13 Ferreira PF, Gatehouse PD, Mohiaddin RH. et al. Cardiovascular magnetic resonance artefacts. J Cardiovasc Magn Reson 2013; 15: 41 . doi:10.1186/1532-429X-15-41
  • 14 Finn JP, Nael K, Deshpande V. et al. Cardiac MR imaging: state of the technology. Radiology 2006; 241: 338-354
  • 15 Olivieri LJ, Cross RR, O'Brien KE. et al. Optimized protocols for cardiac magnetic resonance imaging in patients with thoracic metallic implants. Pediatr Radiol 2015; 45: 1455-1464 . doi:10.1007/s00247-015-3366-0
  • 16 Kido T, Kido T, Nakamura M. et al. Compressed sensing real-time cine cardiovascular magnetic resonance: accurate assessment of left ventricular function in a single-breath-hold. J Cardiovasc Magn Reson 2016; 18: 50,016-0271-0 . doi:10.1186/s12968-016-0271-0
  • 17 Wood PW, Choy JB, Nanda NC. et al. Left ventricular ejection fraction and volumes: it depends on the imaging method. Echocardiography 2014; 31: 87-100 . doi:10.1111/echo.12331
  • 18 Pellikka PA, She L, Holly TA. et al. Variability in Ejection Fraction Measured By Echocardiography, Gated Single-Photon Emission Computed Tomography, and Cardiac Magnetic Resonance in Patients With Coronary Artery Disease and Left Ventricular Dysfunction. JAMA Netw Open 2018; 1: e181456 . doi:10.1001/jamanetworkopen.2018.1456
  • 19 Reiter G, Reiter U, Rienmüller R. et al. On the value of geometry-based models for left ventricular volumetry in magnetic resonance imaging and electron beam tomography: a Bland-Altman analysis. Eur J Radiol 2004; 52: 110-118
  • 20 Kawaji K, Codella NC, Prince MR. et al. Automated segmentation of routine clinical cardiac magnetic resonance imaging for assessment of left ventricular diastolic dysfunction. Circ Cardiovasc Imaging 2009; 2: 476-484 . doi:10.1161/CIRCIMAGING.109.879304
  • 21 Nacif MS, Almeida ALC, Young AA. et al. Three-Dimensional Volumetric Assessment of Diastolic Function by Cardiac Magnetic Resonance Imaging: The Multi-Ethnic Study of Atherosclerosis (MESA). Arq Bras Cardiol 2017; 108: 552-563 . doi:10.5935/abc.20170063
  • 22 Kowallick JT, Morton G, Lamata P. et al. Quantification of atrial dynamics using cardiovascular magnetic resonance: inter-study reproducibility. J Cardiovasc Magn Reson 2015; 17: 36,015-0140-2 . doi:10.1186/s12968-015-0140-2
  • 23 Contijoch F, Witschey WR, Rogers K. et al. User-initialized active contour segmentation and golden-angle real-time cardiovascular magnetic resonance enable accurate assessment of LV function in patients with sinus rhythm and arrhythmias. J Cardiovasc Magn Reson 2015; 17: 37 . doi:10.1186/s12968-015-0146-9
  • 24 Contijoch F, Rogers K, Rears H. et al. Quantification of Left Ventricular Function With Premature Ventricular Complexes Reveals Variable Hemodynamics. Circ Arrhythm Electrophysiol 2016; 9: e003520 . doi:10.1161/CIRCEP.115.003520
  • 25 Ibrahim el-SH. Myocardial tagging by cardiovascular magnetic resonance: evolution of techniques – pulse sequences, analysis algorithms, and applications. J Cardiovasc Magn Reson 2011; 13: 36,429X-13-36 . doi:10.1186/1532-429X-13-36
  • 26 Augustine D, Lewandowski AJ, Lazdam M. et al. Global and regional left ventricular myocardial deformation measures by magnetic resonance feature tracking in healthy volunteers: comparison with tagging and relevance of gender. J Cardiovasc Magn Reson 2013; 15: 8,429X-15-8 . doi:10.1186/1532-429X-15-8
  • 27 Almutairi HM, Boubertakh R, Miquel ME. et al. Myocardial deformation assessment using cardiovascular magnetic resonance-feature tracking technique. Br J Radiol 2017; 90: 20170072 . doi:10.1259/bjr.20170072
  • 28 Kupfahl C, Honold M, Meinhardt G. et al. Evaluation of aortic stenosis by cardiovascular magnetic resonance imaging: comparison with established routine clinical techniques. Heart 2004; 90: 893-901 . doi:10.1136/hrt.2003.022376
  • 29 Schlosser T, Malyar N, Jochims M. et al. Quantification of aortic valve stenosis in MRI-comparison of steady-state free precession and fast low-angle shot sequences. Eur Radiol 2007; 17: 1284-1290 . doi:10.1007/s00330-006-0437-5
  • 30 Gatehouse PD, Keegan J, Crowe LA. et al. Applications of phase-contrast flow and velocity imaging in cardiovascular MRI. Eur Radiol 2005; 15: 2172-2184 . doi:10.1007/s00330-005-2829-3
  • 31 Nayak KS, Nielsen JF, Bernstein MA. et al. Cardiovascular magnetic resonance phase contrast imaging. J Cardiovasc Magn Reson 2015; 17: 71,015-0172-7 . doi:10.1186/s12968-015-0172-7
  • 32 Dyverfeldt P, Bissell M, Barker AJ. et al. 4D flow cardiovascular magnetic resonance consensus statement. J Cardiovasc Magn Reson 2015; 17: 72,015-0174-5 . doi:10.1186/s12968-015-0174-5
  • 33 Gatehouse PD, Rolf MP, Graves MJ. et al. Flow measurement by cardiovascular magnetic resonance: a multi-centre multi-vendor study of background phase offset errors that can compromise the accuracy of derived regurgitant or shunt flow measurements. J Cardiovasc Magn Reson 2010; 12: 5,429X-12-5 . doi:10.1186/1532-429X-12-5
  • 34 Aquaro GD, Barison A, Todiere G. et al. Cardiac magnetic resonance “virtual catheterization” for the quantification of valvular regurgitations and cardiac shunt. J Cardiovasc Med (Hagerstown) 2015; 16: 663-670 . doi:10.2459/JCM.0000000000000245
  • 35 Krieger EV, Lee J, Branch KR. et al. Quantitation of mitral regurgitation with cardiac magnetic resonance imaging: a systematic review. Heart 2016; 102: 1864-1870 . doi:10.1136/heartjnl-2015-309054
  • 36 Defrance C, Bollache E, Kachenoura N. et al. Evaluation of aortic valve stenosis using cardiovascular magnetic resonance: comparison of an original semiautomated analysis of phase-contrast cardiovascular magnetic resonance with Doppler echocardiography. Circ Cardiovasc Imaging 2012; 5: 604-612 . doi:10.1161/CIRCIMAGING.111.971218
  • 37 Bollache E, Redheuil A, Clement-Guinaudeau S. et al. Automated left ventricular diastolic function evaluation from phase-contrast cardiovascular magnetic resonance and comparison with Doppler echocardiography. J Cardiovasc Magn Reson 2010; 12: 63,429X-12-63 . doi:10.1186/1532-429X-12-63
  • 38 Ashrafpoor G, Bollache E, Redheuil A. et al. Age-specific changes in left ventricular diastolic function: a velocity-encoded magnetic resonance imaging study. Eur Radiol 2015; 25: 1077-1086 . doi:10.1007/s00330-014-3488-z
  • 39 Buss SJ, Krautz B, Schnackenburg B. et al. Classification of diastolic function with phase-contrast cardiac magnetic resonance imaging: validation with echocardiography and age-related reference values. Clin Res Cardiol 2014; 103: 441-450 . doi:10.1007/s00392-014-0669-3
  • 40 Jerosch-Herold M. Quantification of myocardial perfusion by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2010; 12: 57 . doi:10.1186/1532-429X-12-57
  • 41 Klem I, Heitner JF, Shah DJ. et al. Improved detection of coronary artery disease by stress perfusion cardiovascular magnetic resonance with the use of delayed enhancement infarction imaging. J Am Coll Cardiol 2006; 47: 1630-1638 . doi:10.1016/j.jacc.2005.10.074
  • 42 Thomson LE, Fieno DS, Abidov A. et al. Added value of rest to stress study for recognition of artifacts in perfusion cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2007; 9: 733-740 . doi:10.1080/10976640701544415
  • 43 Zorach B, Shaw PW, Bourque J. et al. Quantitative cardiovascular magnetic resonance perfusion imaging identifies reduced flow reserve in microvascular coronary artery disease. J Cardiovasc Magn Reson 2018; 20: 14,018-0435-1 . doi:10.1186/s12968-018-0435-1
  • 44 Kellman P, Hansen MS, Nielles-Vallespin S. et al. Myocardial perfusion cardiovascular magnetic resonance: optimized dual sequence and reconstruction for quantification. J Cardiovasc Magn Reson 2017; 19: 43,017-0355-5 . doi:10.1186/s12968-017-0355-5
  • 45 Watkins S, McGeoch R, Lyne J. et al. Validation of magnetic resonance myocardial perfusion imaging with fractional flow reserve for the detection of significant coronary heart disease. Circulation 2009; 120: 2207-2213 . doi:10.1161/CIRCULATIONAHA.109.872358
  • 46 Mordini FE, Haddad T, Hsu LY. et al. Diagnostic accuracy of stress perfusion CMR in comparison with quantitative coronary angiography: fully quantitative, semiquantitative, and qualitative assessment. JACC Cardiovasc Imaging 2014; 7: 14-22 . doi:10.1016/j.jcmg.2013.08.014
  • 47 Handayani A, Sijens PE, Lubbers DD. et al. Influence of the choice of software package on the outcome of semiquantitative MR myocardial perfusion analysis. Radiology 2013; 266: 759-765 . doi:10.1148/radiol.12120626
  • 48 van Dijk R, van Assen M, Vliegenthart R. et al. Diagnostic performance of semi-quantitative and quantitative stress CMR perfusion analysis: a meta-analysis. J Cardiovasc Magn Reson 2017; 19: 92 . doi:10.1186/s12968-017-0393-z
  • 49 Kellman P, Hansen MS. T1-mapping in the heart: accuracy and precision. J Cardiovasc Magn Reson 2014; 16: 2,429X-16-2 . doi:10.1186/s12968-015-0136-y
  • 50 Reiter G, Reiter C, Krauter C. et al. Cardiac magnetic resonance T1 mapping. Part 1: Aspects of acquisition and evaluation. Eur J Radiol 2018; 109: 223-234 . doi:10.1016/j.ejrad.2018.10.011
  • 51 Kim PK, Hong YJ, Im DJ. et al. Myocardial T1 and T2 Mapping: Techniques and Clinical Applications. Korean J Radiol 2017; 18: 113-131 . doi:10.3348/kjr.2017.18.1.113
  • 52 Lota AS, Gatehouse PD, Mohiaddin RH. T2 mapping and T2* imaging in heart failure. Heart Fail Rev 2017; 22: 431-440 . doi:10.1007/s10741-017-9616-5
  • 53 Reiter U, Reiter C, Krauter C. et al. Cardiac magnetic resonance T1 mapping. Part 2: Diagnostic potential and applications. Eur J Radiol 2018; 109: 235-247 . doi:10.1016/j.ejrad.2018.10.013
  • 54 Kellman P, Wilson JR, Xue H. et al. Extracellular volume fraction mapping in the myocardium, part 1: evaluation of an automated method. J Cardiovasc Magn Reson 2012; 14: 63,429X-14-63 . doi:10.1186/1532-429X-14-63
  • 55 Ferreira VM, Schulz-Menger J, Holmvang G. et al. Cardiovascular Magnetic Resonance in Nonischemic Myocardial Inflammation: Expert Recommendations. J Am Coll Cardiol 2018; 72: 3158-3176 . doi:10.1016/j.jacc.2018.09.072
  • 56 Diao KY, Yang ZG, Xu HY. et al. Histologic validation of myocardial fibrosis measured by T1 mapping: a systematic review and meta-analysis. J Cardiovasc Magn Reson 2016; 18: 92,016-0313-7 . doi:10.1186/s12968-016-0313-7
  • 57 Piechnik SK, Ferreira VM, Lewandowski AJ. et al. Normal variation of magnetic resonance T1 relaxation times in the human population at 1.5 T using ShMOLLI. J Cardiovasc Magn Reson 2013; 15: 13 . doi:10.1186/1532-429X-15-13
  • 58 Kellman P, Bandettini WP, Mancini C. et al. Characterization of myocardial T1-mapping bias caused by intramyocardial fat in inversion recovery and saturation recovery techniques. J Cardiovasc Magn Reson 2015; 17: 33 . doi:10.1186/s12968-015-0136-y
  • 59 Wood JC. Cardiac iron across different transfusion-dependent diseases. Blood Rev 2008; 22 (Suppl. 02) S14-S21 . doi:10.1016/S0268-960X(08)70004-3
  • 60 Carpenter JP, He T, Kirk P. et al. Calibration of myocardial T2 and T1 against iron concentration. J Cardiovasc Magn Reson 2014; 16: 62,014-0062-4 . doi:10.1186/s12968-014-0062-4
  • 61 Kritsaneepaiboon S, Ina N, Chotsampancharoen T. et al. The relationship between myocardial and hepatic T2 and T2* at 1.5T and 3T MRI in normal and iron-overloaded patients. Acta Radiol 2018; 59: 355-362 . doi:10.1177/0284185117715285