Osteologie 2020; 29(03): 194-206
DOI: 10.1055/a-1177-4031
Originalarbeit

Dynamisches Krafttraining und Knochendichte an der Lendenwirbelsäule postmenopausaler Frauen

Eine Meta-Analyse unter besonderer Berücksichtigung trainingswissenschaftlicher KriterienDynamic Resistance Exercise and Bone Mineral Density at the Lumbar Spine in Postmenopausal WomenA systematic review and meta-analysis with special emphasis to exercise parameters
Wolfgang Kemmler
1   Institut für Medizinische Physik (IMP), Friedrich-Alexander-Universität Erlangen-Nürnberg
,
Mahdieh Shojaa
1   Institut für Medizinische Physik (IMP), Friedrich-Alexander-Universität Erlangen-Nürnberg
,
Matthias Kohl
2   Fakultät Medical and Life Sciences, Fachhochschule Furtwangen
,
Daniel Schoene
1   Institut für Medizinische Physik (IMP), Friedrich-Alexander-Universität Erlangen-Nürnberg
,
Simon von Stengel
1   Institut für Medizinische Physik (IMP), Friedrich-Alexander-Universität Erlangen-Nürnberg
› Author Affiliations

Zusammenfassung

Ziel dieser Metaanalyse war es (1) den Effekt eines dynamischen Krafttrainings (DRT) auf die Knochendichte (BMD) der Lendenwirbelsäule (LWS) einzuschätzen, (2) günstige Belastungs-komponenten zu identifizieren und (3) Trainingsempfehlungen abzuleiten.

Eine systematische Literaturrecherche schloss (a) kontrollierte Studien, (b) DRT ≥ 6 Monate mit mindestens einer Trainings- (TG) und einer Kontrollgruppe (KG), (c) LWS-BMD-Messung vor und nach der Intervention und (e) postmenopausale Frauen ein. Subgruppenanalysen wurden für Interventionsdauer, Art des DRT, Trainingshäufigkeit (TH), und -volumen sowie Reizintensität durchgeführt.

17 Artikel mit 20 TG und 18 KG konnten eingeschlossen werden. Die standardisierte Mittelwertdifferenz für die LWS-BMD zeigte einen signifikanten Effekt (0,59; 95%-CI: 0,26–0,92). Eine niedrige TH zeigte signifikant höhere Effekte auf die BMD als eine TH von ≥ 2 Einheiten/Woche.

Die Meta-Analyse zeigte einen moderaten DRT-Effekt auf die LWS-BMD. Ergebnisse der Subanalysen standen zum Teil im Gegensatz zur vorliegenden Literatur. Subanalysen meta-analytischer Auswertung scheinen zur Generierung erfolgversprechender Trainingsprotokolle nicht geeignet zu sein.

Abstract

Exercise might be the most promising non-pharmacologic agent in fracture prevention of older people. Dynamic resistance exercise (DRT) is a recognised component of most exercise protocols, be it in fall prevention or bone strengthening exercise protocols. However, the most optimum DRT protocol to address Bone Mineral Density (BMD) in postmenopausal women has yet to be fully validated. Hence the aim of this systematic review and meta-analysis aimed (1) to determine the effect of dynamic resistance exercise (DRT) on BMD at the lumbar spine (LS) in postmenopausal women (b) to identify exercise component particularly effective to trigger favourable LS-BMD changes and (3) to derive evidence-based recommendations for optimised training protocols.

A systematic review of the literature according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) statement included 8 different databases (PubMed, Scopus, Web of Science, Cochrane, Science Direct, Eric, ProQuest und Primo) without language restrictions. We included (a) controlled trials of isolated DRT with at least one exercise and one control group, (b) interventions of six months or longer, (c) BMD assessments at the LS at least before and after the study, (d) studies that focused on postmenopausal women and/or reported dedicated results for this group. Primary outcome measure for the meta-analysis was standardised mean difference (SMD) for BMD-changes at lumbar spine (LS). Further we conducted sub-analysis to determine modulators of the exercise effect on BMD using subgroup-analysis. We included ‘intervention length’, ‘type of DRT’, ‘training frequency’, ‘exercise intensity’ and ‘exercise volume’ split into two or three meaningful categories in the analyses.

In summary, 17 articles with 20 exercise and 18 control groups were eligible. We observed a significant effect (p < .001) of moderate size (SMD: (0.59; 95%-CI: 0.26-0.92) for LS-BMD changes. Apart from one exception we did not observe significant or relevant (p < .20) differences between the categories of the given modulators. Lower training frequency (< 2 sessions/week) resulted in significantly higher BMD changes at LS, however, compared to higher training frequency (≥ 2 sessions/week).

The work provided further evidence for a significant, albeit only moderate, DRT effect on LS-BMD in postmenopausal women. We attribute this suboptimum result to the high variation within the eligible studies with trials that did not properly apply basic exercise principle in their research. Unfortunately, sub-analysis did not result in reliable data. In contrast to all present studies, lower training frequency was significantly more favourable to increase BMD at LS compared with higher training frequency. We conclude that sub-analyses of meta-analytical evaluation were unable to identify promising exercise components and thus derive optimum training protocols for bone strengthening due to the close interaction of exercise parameters.



Publication History

Article published online:
16 July 2020

© Georg Thieme Verlag KG
Stuttgart · New York

 
  • Literatur

  • 1 Kemmler W, Bebenek M, Kohl M. et al. Exercise and fractures in postmenopausal women. Final results of the controlled Erlangen Fitness and Osteoporosis Prevention Study (EFOPS). Osteoporos Int 2015; 26 (10) 2491-2499
  • 2 Kemmler W, Haberle L, von Stengel S. Effects of exercise on fracture reduction in older adults: A systematic review and meta-analysis. Osteoporos Int 2013; 24 (07) 1937-1950
  • 3 Beck BR, Daly RM, Singh MA. et al. Exercise and Sports Science Australia (ESSA) position statement on exercise prescription for the prevention and management of osteoporosis. J Sci Med Sport 2016; 20 (05) 438-445
  • 4 Daly RM, Dalla Via J, Duckham RL. et al. Exercise for the prevention of osteoporosis in postmenopausal women: An evidence-based guide to the optimal prescription. Braz J Phys Ther 2019; 23 (02) 170-180
  • 5 Kemmler W, von Stengel S. The role of exercise on fracture reduction and bone strengthening. In: Zoladz J. , ed. Muscle and exercise physiology. London: Elsevier; 2018: 433-448
  • 6 Kelley GA, Kelley KS, Kohrt WM. Effects of ground and joint reaction force exercise on lumbar spine and femoral neck bone mineral density in postmenopausal women: A meta-analysis of randomized controlled trials. BMC Musculoskelet Disord 2012; 13: 177
  • 7 Marques EA, Mota J, Carvalho J. Exercise effects on bone mineral density in older adults: A meta-analysis of randomized controlled trials. Age 2011; 34 (06) 1493-1515
  • 8 Martyn-St James M, Carroll S. Effects of different impact exercise modalities on bone mineral density in premenopausal women: A meta-analysis. J Bone Miner Metab 2011; 28 (03) 251-267
  • 9 IQWIG. Leitliniensynopse für ein DMP Osteoporose. Köln: Institut für Qualität und Wirtschaftlichkeit im Gesundheitswesen; 2018
  • 10 Moher D, Liberati A, Tetzlaff J. et al. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Ann Intern Med 2009; 151 (04) 264-9, W64
  • 11 de Morton NA. The PEDro scale is a valid measure of the methodological quality of clinical trials: A demographic study. Aust J Physiother 2009; 55 (02) 129-133
  • 12 Sherrington C, Herbert RD, Maher CG. et al. PEDro. A database of randomized trials and systematic reviews in physiotherapy. Man Ther 2000; 5 (04) 223-226
  • 13 Ribeiro de Avila V, Bento T, Gomes W. et al. Functional outcomes and quality of life after ankle fracture surgically treated: a systematic review. J Sport Rehabil 2018; 27 (03) 274-283
  • 14 Cochrane. Cochrane handbook for systematic reviews of interventions: the cochrane collaboration; 2016. Available from. www.training.cochrane.org/handbook. To cite the print edition of the Handbook, please use: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA. (editors). Cochrane Handbook for Systematic Reviews of Interventions.
  • 15 R_Development_Core_Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2019
  • 16 Viechtbauer W. Conducting meta-analyses in R with the metafor package. J Stat Softw 2010; 36 (03) 1-48
  • 17 Duval SJ, Tweedie RL. A nonparametric “trim and fill” method of accounting for publication bias in meta-analysis. JASA 2000; 95: 89-98
  • 18 Bemben DA, Fetters NL, Bemben MG. et al. Musculoskeletal responses to high- and low-intensity resistance training in early postmenopausal women. Med Sci Sports Exerc 2000; 32 (11) 1949-1957
  • 19 Bemben DA, Palmer IJ, Bemben MG. et al. Effects of combined whole-body vibration and resistance training on muscular strength and bone metabolism in postmenopausal women. Bone 2010; 47 (03) 650-656
  • 20 Chilibeck PD, Davison KS, Whiting SJ. et al. The effect of strength training combined with bisphosphonate (etidronate) therapy on bone mineral, lean tissue, and fat mass in postmenopausal women. Can J Physiol Pharmacol 2002; 80 (10) 941-950
  • 21 de Oliveira LC, de Oliveira RG, de Almeida Pires-oliveira DA. Effects of whole-body vibration versus pilates exercise on bone mineral density in postmenopausal women: a randomized and controlled clinical trial. J Geriatr Phys Ther 2019; 42 (02) E23-E31
  • 22 Duff WR, Kontulainen SA, Candow DG. et al. Effects of low-dose ibuprofen supplementation and resistance training on bone and muscle in postmenopausal women: A randomized controlled trial. Bone Rep 2016; 5: 96-103
  • 23 Hartard M, Haber P, Ilieva D. et al. Systematic strength training as a model of therapeutic intervention. Arch Phys Med Rehabil 1996; 75: 21-28
  • 24 Kerr D, Morton A, Dick I. et al. Exercise effects on bone mass in postmenopausal women are site-specific and load-dependent. J Bone Miner Res 1996; 11 (02) 218-225
  • 25 Kohrt WM, Ehsani AA. S.J. B. Effects of exercise involving predominantly either joint-reaction of ground-reaction forces on bone mineral density in older women. J Bone Miner Res 1997; 12: 1253-1261
  • 26 Maddalozzo GF, Widrick JJ, Cardinal BJ. et al. The effects of hormone replacement therapy and resistance training on spine bone mineral density in early postmenopausal women. Bone 2007; 40 (05) 1244-1251
  • 27 Nelson ME, Fiatarone MA, Morganti CM. et al. Effects of high-intensity strength training on multiple risk factors for osteoporotic fractures. A randomized controlled trial. Jama 1994; 272 (24) 1909-1914
  • 28 Nicholson VP, McKean MR, Slater GJ. et al. Low-load very high-repetition resistance training attenuates bone loss at the lumbar spine in active post-menopausal women. Calcif Tissue Int 2015; 96 (06) 490-499
  • 29 Orsatti F, Petri-Nahas E, Nahas-Neto J. et al. Effects of isoflavone and counter-resistance training on bone mineral density in postmenopausal women. Rev Bras Cineantropom Desempenho Hum 2013; 15: 726-736
  • 30 Pruitt LA, Jackson RD, Bartels RL. et al. Weight-training effects on bone mineral density in early postmenopausal women. J Bone Miner Res 1992; 7 (02) 179-185
  • 31 Pruitt LA, Taaffe DR, Marcus R. Effects of a one-year high-intensity versus low-intensity resistance training program on bone mineral density in older women. J Bone Miner Res 1995; 10 (11) 1788-1795
  • 32 Rhodes EC, Martin AD, Taunton JE. et al. Effects of one year of resistance training on the relation between muscular strength and bone density in elderly women. Br J Sports Med 2000; 34 (01) 18-22
  • 33 Sinaki M, Wahner HW, Offord KP. et al. Efficacy of nonloading exercises in prevention of vertebral bone loss in postmenopausal women: A controlled trial. Mayo Clin Proc 1989; 64 (07) 762-769
  • 34 Woo J, Hong A, Lau E. et al. A randomised controlled trial of Tai Chi and resistance exercise on bone health, muscle strength and balance in community-living elderly people. Age Ageing 2007; 36 (03) 262-268
  • 35 Steele J, Fisher J, Giessing J. et al. Clarity in reporting terminology and definitions of set end points in resistance training. Muscle Nerve 2017; 368-374 (03) 368-374
  • 36 Kerr D, Ackland T, Maslen B. et al. Resistance training over 2 years increases bone mass in calcium-replete postmenopausal women. J Bone Miner Res 2001; 16 (01) 175-181
  • 37 Borg G, Borg E. , The Borg CR Scales® Folder. In: Perception B. , ed. Hasselby, Sweden: 2010. .
  • 38 Toigo M, Boutellier U. New fundamental resistance exercise determinants of molecular and cellular muscle adaptations. Eur J Appl Physiol 2006; 97 (06) 643-663
  • 39 Hoover DL, VanWye WR, Judge LW. Periodization and physical therapy: Bridging the gap between training and rehabilitation. Phys Ther Sport 2016; 18: 1-20
  • 40 Howe TE, Shea B, Dawson LJ. et al. Exercise for preventing and treating osteoporosis in postmenopausal women. Cochrane Database Syst Rev 2011; (07) CD000333
  • 41 Kelley GA, Kelley KS, Tran ZV. Resistance training and bone mineral density in women: A meta-analysis of controlled trials. Am J Phys Med Rehabil 2001; 80 (01) 65-77
  • 42 Martyn-St.James M. , Caroll S. High intensity resistance training and postmenopausal bone loss: A meta-analysis. Osteoporos Int 2006; 17: 1225-1240
  • 43 Zhao R, Zhang M, Zhang Q. The effectiveness of combined exercise interventions for preventing postmenopausal bone loss: a systematic review and meta-analysis. J Orthop Sports Phys Ther 2017; 47 (04) 241-251
  • 44 Eriksen EF. Cellular mechanisms of bone remodeling. Rev Endocr Metab Disord 2010; 11 (04) 219-227
  • 45 Kemmler W, Engelke K, von Stengel S. et al. Long-term four-year exercise has a positive effect on menopausal risk factors: The Erlangen fitness osteoporosis prevention study. J Strength Cond Res 2007; 21 (01) 232-239
  • 46 Kemmler W, Kohl M, von Stengel S. Long-term effects of exercise in postmenopausal women: 16-year results of the Erlangen Fitness and Osteoporosis Prevention Study (EFOPS). Menopause. 2016 Epub ahead of print.
  • 47 Haff GG. Roundtable discussion: machines versus free weights. Strength Conditioning J 2000; 22 (06) 18-30
  • 48 Schott N, Johnen B, Holfelder B. Effects of free weights and machine training on muscular strength in high-functioning older adults. Exp Gerontol 2019; 122: 15-24
  • 49 Newman AB, Kupelian V, Visser M. et al. Strength, but not muscle mass, is associated with mortality in the health, aging and body composition study cohort. J Gerontol A Biol Sci Med Sci 2006; 61 (01) 72-77
  • 50 Roshanravan B, Patel KV, Fried LF. et al. Association of muscle endurance, fatigability, and strength with functional limitation and mortality in the health aging and body composition study. J Gerontol A Biol Sci Med Sci 2017; 72 (02) 284-291
  • 51 Visser M, Goodpaster BH, Kritchevsky SB. et al. Muscle mass, muscle strength, and muscle fat infiltration as predictors of incident mobility limitations in well-functioning older persons. J Gerontol A Biol Sci Med Sci 2005; 60 (03) 324-333
  • 52 Wagner P. Aussteigen oder Dabeibleiben? Dissertation. Darmstadt: Technical University Darmstadt; 2000 .
  • 53 Ashe MC, Gorman E, Khan KM. et al. Does frequency of resistance training affect tibial cortical bone density in older women? A randomized controlled trial. Osteoporos Int 2013; 24 (02) 623-632
  • 54 Bailey CA, Brooke-Wavell K. Optimum frequency of exercise for bone health: Randomised controlled trial of a high-impact unilateral intervention. Bone 2010; 46 (04) 1043-1049
  • 55 Bemben DA, Bemben MG. Dose-response effect of 40 weeks of resistance training on bone mineral density in older adults. Osteoporos Int 2011; 22 (01) 179-186
  • 56 Cussler EC, Going SB, Houtkooper LB. et al. Exercise frequency and calcium intake predict 4-year bone changes in postmenopausal women. Osteoporos Int 2005; 16 (12) 2129-2141
  • 57 Kemmler W, von Stengel S. Exercise frequency, health risk factors, and diseases of the elderly. Arch Phys Med Rehabil 2013; 94 (11) 2046-2053
  • 58 Kemmler W, von Stengel S. Dose-response effect of exercise frequency on bone mineral density in post-menopausal, osteopenic women. Scand J Med Sci Sports 2014; 24: 526-534
  • 59 Kemmler W, von Stengel S, Kohl M. Exercise frequency and bone mineral density development in exercising postmenopausal osteopenic women. Is there a critical dose of exercise for affecting bone? Results of the Erlangen fitness and osteoporosis prevention study. Bone 2016; 89: 1-6
  • 60 Maddalozzo GF, Snow CM. High intensity resistance training: Effects on bone in older men and women. Calcif Tissue Int 2000; 66 (06) 399-404
  • 61 Taaffe DR, Pruitt L, Pyka G. et al. Comparative effects of high- and low-intensity resistance training on thigh muscle strength, fiber area, and tissue composition in elderly women. Clin Physiol 1996; 16 (04) 381-392
  • 62 Vincent KR, Braith RW. Resistance exercise and bone turnover in elderly men and women. Med Sci Sports Exerc 2002; 34 (01) 17-23
  • 63 Weineck J. Optimales Training. Erlangen: Spitta-Verlag; 2019
  • 64 Rubin CT, Lanyon LE. Regulation of bone formation by applied dynamic loads. J Bone Joint Surg Am 1984; 66 (03) 397-402
  • 65 Kemmler W, Stengel V. , eds. The role of exercise on fracture reduction and bone strengthening. London: Academic Press; 2019
  • 66 Kemmler W, von Stengel S. Exercise and osteoporosis-related fractures: Perspectives and recommendations of the sports and exercise scientist. Physician Sportmed 2011; 39 (01) 142-157
  • 67 Cullen DM, Smith RT, Akhter MP. Bone-loading response varies with strain magnitude and cycle number. J Appl Physiol 2001; 91 (05) 1971-1976
  • 68 Paoli A. Resistance training: The multifaceted side of exercise. Am J Physiol Endocrinol Metab 2012; 302 (03) E387
  • 69 Gentil P, Arruda A, Souza D. et al. Is there any practical application of meta-analytical results in strength training?. Front Physiol 2017; 8: 1
  • 70 Turner CH, Owan I, Takano Y. Mechanotransduction in bone: Role of strain rate. Am J Physiol Endocrinol Metab 1995; 269: E438-E42
  • 71 von Stengel S, Kemmler W, Lauber D. et al. Power training is more effective than strength training to maintain bone mineral density in postmenopausal woman. J Appl Physiol 2005; 99 (02) 181-188
  • 72 Sterne JA, Sutton AJ, Ioannidis JP. et al. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ 2011; 343: d4002