CC BY-NC-ND 4.0 · Synlett 2021; 32(06): 582-586
DOI: 10.1055/a-1304-4575
letter

N-Arylbenzo[b]phenothiazines as Reducing Photoredox Catalysts for Nucleophilic Additions of Alcohols to Styrenes: Shift towards Visible Light

Fabienne Seyfert
,
This work was financially supported by the Deutsche Forschungsgemeinschaft (DFG, grant Wa 1386/16-2). Financial support by the Karlsruhe Institute of Technology (KIT) is gratefully acknowledged.


Abstract

N-Phenylphenothiazines are an important class of photoredox catalysts because they are synthetically well accessible, they allow the tuning of the optoelectronic properties by different substituents, and they have strong reduction properties for activation of alkenes. One of the major disadvantages of N-phenylphenothiazines, however, is the excitation at 365 nm in the UV-A light range. We synthesized three differently dialkylamino-substituted N-phenylbenzo[b]phenothiazines as alternative photoredox catalysts and applied them for the nucleo­philic addition of alkohols to α-methyl styrene. The additional benzene ring shift the absorbance bathochromically and allows performing the photocatalyses by excitation at 385 nm and 405 nm. This type of photoredox catalysis tolerates other functional groups, as representatively shown for alcohols as substrates with C–C and C–N triple bonds.

Supporting Information



Publication History

Received: 29 September 2020

Accepted: 05 November 2020

Accepted Manuscript online:
05 November 2020

Article published online:
13 January 2021

© 2020. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Glaser F, Kerzig C, Wenger OS. Angew. Chem. Int. Ed. 2020; 59: 10266
    • 1b Rehm TH. ChemPhotoChem 2019; 3: 1
    • 1c Strieth-Kalthoff F, James MJ, Teders M, Pitzer L, Glorius F. Chem. Soc. Rev. 2018; 47: 7190
    • 1d Arias-Rotondo DM, McCusker JK. Chem. Soc. Rev. 2016; 45: 5803
    • 2a Pagire SK, Föll T, Reiser O. Acc. Chem. Res. 2020; 53: 782
    • 2b Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
    • 2c McAtee RC, McClain EJ, Stephenson CR. J. Trends Chem. 2019; 1: 111
    • 2d Marzo L, Paigre SK, Reiser O, König B. Angew. Chem. Int. Ed. 2018; 57: 10034
    • 2e Buzzetti L, Crisenza GE. M, Melchiorre P. Angew. Chem. Int. Ed. 2019; 58: 3730
    • 2f Capaldo L, Ravelli D. Eur. J. Org. Chem. 2020; 2783
    • 2g Ravelli D, Dondi D, Fagnoni M, Albini A. Chem. Soc. Rev. 2009; 38: 1999
  • 3 Hari DP, König B. Chem. Commun. 2014; 50: 6688
  • 4 Ghosh I, Marzo L, Das A, Shaikh R, König B. Acc. Chem. Res. 2016; 49: 1566
  • 5 Margrey KA, Nicewicz DA. Acc. Chem. Res. 2016; 49: 1997
  • 6 Zilate B, Fischer C, Sparr C. Chem. Commun. 2020; 56: 1767
  • 7 Mateos J, Rigodanza F, Vega-Penaloza A, Sartorel A, Natali M, Bortolato T, Pelosi G, Companyó X, Bonchio M, Dell’Amico L. Angew. Chem. Int. Ed. 2020; 59: 1303
  • 8 Speckmeier E, Fischer TG, Zeitler K. J. Am. Chem. Soc. 2018; 140: 15353
  • 9 Fischer C, Kerzig C, Zilate B, Wenger OS, Sparr C. ACS Catal. 2020; 10: 210
  • 10 Ohlow MJ, Moosmann B. Drug Discovery Today 2011; 16: 119
  • 11 Speck F, Rombach D, Wagenknecht H.-A. Beilstein J. Org. Chem. 2019; 15: 52
  • 12 Garrido-Castro AF, Salaverri N, Maestro MC, Alemán J. Org Lett. 2019; 21: 5295
    • 13a Rombach D, Wagenknecht H.-A. Angew. Chem. Int. Ed. 2020; 59: 300
    • 13b Rombach D, Wagenknecht H.-A. ChemCatChem 2018; 10: 2955
  • 14 Dadashi-Silab S, Pan X, Matyjaszewski K. Chem. Eur. J. 2017; 23: 5972
  • 15 Experimental Procedure Compounds 9 (8.00 g, 50.0 mmol) and 10 (6.25 g, 50.0 mmol) were dissolved in 1,2,4-trichlorobenzene (25 mL), heated to 200 °C, and stirred overnight. After cooling, the product mixture was diluted with n-hexane, and the crystalline 11 was collected by filtration, washed with fresh n-hexane and EtOH, and obtained as yellow powder (5.02 g, 20.2 mmol, 40%). 1H NMR (500 MHz, DMSO): δ = 8.99 (br s, 1 H), 7.57 (t, J = 8.6 Hz, 2 H), 7.49 (s, 1 H), 7.31–7.27 (m, 1 H), 7.20–7.16 (m, 1 H), 7.04–6.96 (m, 3 H), 6.78–6.73 (m, 2 H) ppm. 13C NMR (126 MHz, CDCl3): δ = 140.60, 139.13, 133.31, 129.69, 127.54, 126.56, 126.22, 126.09, 125.89, 124, 123.53, 121.31, 119.91, 115.69, 114.67, 107.97 ppm. ESI-HRMS: m/z calcd: 249.0612 [M+]; found: 249.0603 [M+].
  • 16 Experimental Procedure Compound 11 (250 mg, 1.00 mmol, 1.00 equiv), 4-bromo-N,N-dimethylaniline (300 mg, 1.50 mmol, 1.50 equiv), NaOt-Bu (240 mg, 2.50 mmol, 2.50 equiv), tricyclohexylphosphine (20.0 mg, 0.07 mmol, 0.07 equiv), and Pd2dba3 (46 mg, 0.05 mmol, 0.05 equiv) were dissolved in anhydrous toluene (0.26 M). The reaction mixture was stirred under reflux and inert atmosphere overnight and cooled to r.t. The solvent was removed under vacuum. Compound 1 was purified by column chromatography (hexane/CH2Cl2 = 5:1, silica gel, Rf = 0.34) and obtained as yellow solid (123 mg, 0.330 mmol, 33%). 1H NMR (500 MHz, CDCl3): δ = 7.52 (d, J = 7.7 Hz, 1 H), 7.43 (s, 1 H), 7.33 (d, J = 8.2 Hz, 1 H), 7.26 (d, J = 8.4 Hz, 2 H), 7.21–7.15 (m, 2 H), 7.03 (d, J = 7.5 Hz, 1 H), 6.94 (d, J = 8.7 Hz, 2 H), 6.85 (t, J = 7.15 Hz, 1 H), 6.77 (t, J = 7.2 Hz, 1 H), 6.47 (s, 1 H), 6.27 (d, J = 8.0 Hz, 1 H), 3.09 (s, 6 H) ppm. 13C NMR (126 MHz, CDCl3): δ = 150.19, 143.96, 142.56, 133.36, 131.52, 130.10, 129.37, 126.93, 126.89, 126.42, 126.21, 125.92, 124.27, 124.03, 122.22, 121.65, 119.0, 116.0, 114.04, 110.88, 40.71 ppm. ESI-HRMS: m/z calcd: 368.1347 [M+]; found: 368.1332 [M+].
  • 17 Experimental Procedure Compound 11 (250 mg, 1.00 mmol, 1.00 equiv), 4-bromo-N,N-diisopropylaniline (1.42 mL, 384 mg, 1.50 mmol, 1.50 equiv), NaOt-Bu (240 mg, 2.50 mmol, 2.50 equiv), tricyclohexylphosphine (20.0 mg, 0.07 mmol, 0.07 equiv), and Pd2dba3 (46 mg, 0.05 mmol, 0.05 equiv) were dissolved in anhydrous toluene (0.26 M). The reaction mixture was stirred under reflux and inert atmosphere overnight and cooled to r.t. The solvent was removed under vacuum. Compound 2 was purified by column chromatography (hexane/CH2Cl2 = 1:2, silica gel, Rf = 0.4) and obtained as yellow solid (275 mg, 0.648 mmol, 65%). 1H NMR (500 MHz, CDCl3): δ = 7.52 (d, J = 7.8 Hz, 1 H), 7.43 (s, 1 H), 7.35 (d, J = 7.9 Hz, 1 H), 7.23–7.15 (m, 4 H), 7.06 (d, J = 8.9 Hz, 1 H), 7.03 (d, J = 6.0 Hz, 3 H), 6.87 (t, J = 7.4 Hz, 1 H), 6.78 (t, J = 7.4 Hz, 1 H), 6.52 (s, 1 H), 6.32 (d, J = 7.2 Hz, 1 H), 3.93 (hept, 2 H), 1.36 (d, J = 6.8 Hz, 12 H) ppm. 13C NMR (126 MHz, CDCl3): δ = 148.19, 143.98, 142.54, 133.38, 130.91, 130.11, 129.72, 126.96, 126.89, 126.42, 126.22, 125.88, 124.25, 124.01, 122.29, 121.64, 119.02, 118.79, 116.30, 110.93, 47.70, 21.47 ppm. ESI-HRMS: m/z calcd: 424.1973 [M+]; found: 424.1948 [M+].
  • 18 Experimental Procedure Compound 11 (250 mg, 1.00 mmol, 1.00 equiv), 4-bromo-N,N-diisobutylaniline (299 mg, 1.05 mmol, 1.05 equiv), NaOt-Bu (240 mg, 2.50 mmol, 2.50 equiv), tricyclohexylphosphine (20 mg, 0.07 mmol, 0.07 equiv), and Pd2dba3 (46.0 mg, 0.05 mmol, 0.05 equiv) were dissolved in anhydrous toluene (0.26 M). The reaction mixture was stirred under reflux and inert atmosphere overnight and cooled to r.t. The solvent was removed under vacuum. Compound 3 was purified by column chromatography (hexane, silica, Rf = 0.3) and obtained as white solid (256 mg, 0.566 mmol, 56%). 1H NMR (500 MHz, CDCl3): δ = 7.51 (d, J = 7.0 Hz, 1 H), 7.43 (s, 1 H), 7.35 (d, J = 7.10 Hz, 1 H), 7.22–7.14 (m, 4 H), 7.02 (d, J = 7.25 Hz, 1 H), 6.90–6.75 (m, 4 H), 6.51 (s, 1 H), 6.32 (d, J = 8.10 Hz, 1 H), 3.25 (d, J = 7.21 Hz, 4 H), 2.20 (hept, J = 6.70 Hz, 2 H), 0.99 (d, J = 6.55 Hz, 12 H) ppm. 13C NMR (126 MHz, CDCl3): δ = 148.09, 144.11, 142.68, 133.39, 131.31, 130.09, 128.06, 126.96, 126.89, 126.39, 126.21, 125.84, 124.24, 123.97, 122.30, 121.59, 118.97, 116.31, 113.89, 110.91, 60.65, 26.57, 20.67 ppm. ESI-HRMS: m/z calcd: 452.2286 [M+]; found: 452.2269 [M+].
  • 19 Pavlishchuk VV, Addison AW. Inorg. Chim. Acta 2000; 298: 97
  • 20 Kim H, Kim H, Lambert TH, Lin S. J. Am. Chem. Soc. 2020; 142: 2087
  • 21 McKenzie IA, Wang L, Onuska NP. R, Williams OF, Begam K, Moran AM, Dunietz BD, Nicewicz DA. Nature 2020; 580: 76
  • 22 Nishiyama Y, Wada T, Asaoka S, Mori T, McCarthy TA, Kraut ND, Bright FV, Inoue Y. J. Am. Chem. Soc. 2008; 130: 7526
  • 23 Penner A, Bätzner E, Wagenknecht H.-A. Synlett 2012; 23: 2803