Synlett 2021; 32(07): 718-722
DOI: 10.1055/a-1343-5203
letter

Copper and N-Heterocyclic Carbene-Catalyzed Oxidative Amidation of Aldehydes with Amines

Ashmita Singh
,
Anudeep Kumar Narula
The authors acknowledge the financial support provided by the Guru Gobind Singh Indraprastha University.


Abstract

A one-pot two-step oxidative process has been developed for the tert-butyl hydroperoxide mediated transformation of aldehydes and amines into amides catalyzed by copper(I) iodide and an N-heterocyclic carbene. The process is additive-free and does not require the amine to be transformed into its hydrochloride salts. The method is simple and practicable, has a broad substrate scope, and uses economical, feasible, and abundant reagents.

Supporting Information



Publication History

Received: 03 November 2020

Accepted after revision: 28 December 2020

Accepted Manuscript online:
28 December 2020

Article published online:
15 February 2021

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Cupido T, Tulla-Puche J, Spengler J, Albericio F. Curr. Opin. Drug Discovery Dev. 2007; 10: 768
    • 1b Bode JW. Curr. Opin. Drug Discovery Dev. 2006; 9: 765
    • 1c Humphrey JM, Chamberlin AR. Chem. Rev. 1997; 97: 2243
  • 2 Ghose AK, Viswanadhan VN, Wendoloski JJ. J. Comb. Chem. 1999; 1: 55
    • 3a Han S.-Y, Kim Y.-A. Tetrahedron 2004; 60: 2447
    • 3b Montalbetti CA. G. N, Falque V. Tetrahedron 2005; 61: 10827
    • 3c Valeur E, Bradley M. Chem. Soc. Rev. 2009; 38: 606
    • 3d Larock RC. In Comprehensive Organic Transformations, A Guide to Functional Group Preparations. DOI: Vol. 4, VCH; Weinheim: 1999
  • 4 Constable DJ. C, Dunn PJ, Hayler JD, Humphrey GR, Leazer JL. Jr, Linderman RJ, Lorenz K, Manley J, Pearlman BA, Wells A, Zaks A, Zhang TY. Green Chem. 2007; 9: 411
    • 5a Saxon E, Bertozzi CR. Science 2000; 287: 2007
    • 5b Damkaci F, DeShong P. J. Am. Chem. Soc. 2003; 125: 4408
    • 5c Gololobov YG, Kasukhin LF. Tetrahedron 1992; 48: 1353
    • 6a Owston NA, Parker AJ, Williams JM. J. Org. Lett. 2007; 9: 3599
    • 6b Hashimoto M, Obora Y, Sakaguchi S, Ishii Y. J. Org. Chem. 2008; 73: 2894
    • 7a Ribelin T, Katz CE, English DG, Smith S, Manukyan AK, Day VW, Neuenswander B, Poutsma JL, Aubé J. Angew. Chem. Int. Ed. 2008; 47: 6233
    • 7b Lang S, Murphy JA. Chem. Soc. Rev. 2006; 35: 146
    • 8a Perreux L, Loupy A, Volatron F. Tetrahedron 2002; 58: 2155
    • 8b Allen CL, Chhatwal AR, Williams JM. J. Chem. Commun. 2012; 48: 666
    • 9a Beller M, Cornils B, Frohning CD, Kohlpaintner CW. J. Mol. Catal. A: Chem. 1995; 104: 17
    • 9b Knapton D, Meyer TY. Org. Lett. 2004; 6: 687
    • 9c Uenoyama Y, Fukuyama T, Nobuta O, Matsubara H, Ryu I. Angew. Chem. Int. Ed. 2005; 44: 1075
    • 10a Martinelli JR, Clark TP, Watson DA, Munday RH, Buchwald SL. Angew. Chem. 2007; 119: 8612
    • 10b Nanayakkara P, Alper H. Chem. Commun. 2003; 2384
    • 11a Kolakowski RV, Shangguan N, Sauers RR, Williams LJ. J. Am. Chem. Soc. 2006; 128: 5695
    • 11b Zhang X, Li F, Lu X.-W, Liu C.-F. Bioconjugate Chem. 2009; 20: 197
    • 11c Cadoni R, Porcheddu A, Giacomelli G, De Luca L. Org. Lett. 2012; 14: 5014
    • 12a Chang JW. W, Ton TM. U, Tania S, Taylor PC, Chan PW. H. Chem. Commun. 2010; 46: 922
    • 12b Ton TM. U, Tejo C, Tania S, Chang JW. W, Chan PW. H. J. Org. Chem. 2011; 76: 4894
    • 12c Ghosh SC, Ngiam JS. Y, Chai CL. L, Seayad AM, Dang TT, Chen A. Adv. Synth. Catal. 2012; 354: 1407
    • 12d Ghosh SC, Ngiam JS. Y, Seayad AM, Tuan DT, Chai CL. L, Chen A. J. Org. Chem. 2012; 77: 8007
    • 12e Goh KS, Tan C.-H. RSC Adv. 2012; 2: 5536
    • 12f Liu X, Jensen KF. Green Chem. 2012; 14: 1471
    • 12g Li G.-L, Kung KK.-Y, Wong M.-K. Chem. Commun. 2012; 48: 4112
    • 12h Zhu M, Fujita K.-i, Yamaguchi R. J. Org. Chem. 2012; 77: 9102
  • 13 Nakagawa K, Onoue H, Minami K. Chem. Commun. 1966; 1: 17
  • 14 Ekoue-Kovi K, Wolf C. Chem. Eur. J. 2008; 14: 6302
  • 15 Yoo W, Li C. J. Am. Chem. Soc. 2006; 128: 13064
    • 16a Gaspa S, Porcheddu A, De Luca L. Org. Biomol. Chem. 2013; 11: 3803
    • 16b Li Y, Fan J, Ma L, Li Z. Acta Chim. Sinica 2015; 73: 1311
    • 18a Öfele K. J. Organomet. Chem. 1968; 12: P42
    • 18b Wanzlick HW, Schönherr HJ. Angew. Chem., Int. Ed. Engl. 1968; 7: 141
    • 18c Arduengo AJ. III, Harlow RL, Kline M. J. Am. Chem. Soc. 1991; 113: 361
    • 19a Arduengo AJ. III, Kline M, Calabrese JC, Davidson F. J. Am. Chem. Soc. 1991; 113: 9704
    • 19b Cavallo L, Correa A, Costabile C, Jacobsen H. J. Organomet. Chem. 2005; 690: 5407
    • 20a Knappke CE. I, Imami A, von Wangelin AJ. Chem. Cat. Chem. 2012; 4: 937

    • For the NHC-catalyzed amidation of nonactivated esters with amino alcohols, see:
    • 20b Movassaghi M, Schmidt MA. Org. Lett. 2005; 7: 2453
    • 21a Gunanathan C, Ben-David Y, Milstein D. Science 2007; 317: 790
    • 21b Nordstrøm LU, Vogt H, Madsen R. J. Am. Chem. Soc. 2008; 130: 17672
    • 21c Watson AJ. A, Maxwell AC, Williams JM. J. Org. Lett. 2009; 11: 2667
    • 21d Ghosh SC, Muthaiah S, Zhang Y, Xu X, Hong SH. Adv. Synth. Catal. 2009; 351: 2643
    • 22a Fujita KI, Takahashi Y, Owaki M, Yamamoto KY, Yamaguchi R. Org. Lett. 2004; 6: 2785
    • 22b Zweifel T, Naubron J.-V, Grützmacher H. Angew. Chem. Int. Ed. 2009; 48: 559
    • 23a Balaboina R, Thirukovela NS, Vadde R, Vasam CS. Tetrahedron Lett. 2019; 60: 847
    • 23b Singh K, Pal NK, Guha C, Bera JK. J. Organomet. Chem. 2019; 886: 1
    • 24a Schoenberg A, Heck RF. J. Org. Chem. 1974; 39: 3327
    • 24b Wu X.-F, Neumann H, Beller M. Chem. Asian J. 2010; 5: 2168
    • 24c Martinelli JR, Clark TP, Watson DA, Munday RH, Buchwald SL. Angew. Chem. Int. Ed. 2007; 46: 8460
    • 25a Kim K, Kang B, Hong SH. Tetrahedron 2015; 71: 4565
    • 25b Saha B, Sengupta G, Sarbajna A, Dutta I, Bera JK. J. Organomet. Chem. 2014; 771: 124
    • 25c Muthaiah S, Ghosh SC, Jee J.-E, Chen C, Zhang J, Hong SH. J. Org. Chem. 2010; 75: 3002
  • 26 Singh A, Azad CS, Narula AK. ChemistrySelect 2020; 5: 9417
  • 27 Amides 3ay; General Procedure An oven-dried Schlenk tube was charged with a solution of NHC precursor 1a (10 mol%) and CuI (10 mol%) in CH3CN (3 mL) under N2. NaH (10 mol%) was added, and the resulting mixture was stirred vigorously for about 20–30 min and then the appropriate aldehyde (2.5mmol) and amine (2.5mmol) were added to the flask together with TBHP (3 equiv). The mixture was refluxed for 6 h in an oil bath then cooled to r.t., filtered through a Celite pad, and washed with H2O. The organic portion was extracted with EtOAc, dried (Na2SO4), and purified by column chromatography (silica gel, EtOAc–hexane). 2,6-Difluoro-N-[2-(2-thienyl)ethyl]benzamide (4x) White solid; yield: 521 mg (78%); mp 152–153 °C. 1H NMR (400 MHz, CDCl3): δ = 7.36–7.28 (m, 1 H), 7.15 (dt, J = 5.1, 1.2 Hz, 1 H), 6.96–6.83 (m, 4 H), 6.19 (br s, 1 H), 3.71 (q, J = 6.3 Hz, 2 H), 3.14 (t, J = 6.7 Hz, 2 H). 13C NMR (101 MHz, CDCl3): δ = 161.32, 160.55, 141.04, 131.65, 127.22, 125.75, 124.20, 114.36, 111.95, 41.51, 29.85. LC-MS: m/z [M + H]+ calcd for C13H12F2NOS: 268.0512; found: 268.0509.