Synlett 2021; 32(08): 790-794
DOI: 10.1055/a-1392-2209
letter

Photochemical Synthesis of 4H-Thieno[3,2-c]chromene and Their Optical Properties

Evgeny B. Ulyankin
a   Laboratory of New Organic Materials, Omsk State Technical University, 11 Mira Ave, 644050, Omsk, Russian Federation
,
Yulia P. Bogza
b   Department of Organic Chemistry, Omsk F.M. Dostoevsky State University, 55a Mira Ave, 644077, Omsk, Russian Federation
,
Anastasia S. Kostyuchenko
a   Laboratory of New Organic Materials, Omsk State Technical University, 11 Mira Ave, 644050, Omsk, Russian Federation
b   Department of Organic Chemistry, Omsk F.M. Dostoevsky State University, 55a Mira Ave, 644077, Omsk, Russian Federation
,
Sergey A. Chernenko
a   Laboratory of New Organic Materials, Omsk State Technical University, 11 Mira Ave, 644050, Omsk, Russian Federation
,
Anna L. Samsonenko
b   Department of Organic Chemistry, Omsk F.M. Dostoevsky State University, 55a Mira Ave, 644077, Omsk, Russian Federation
,
Anton L. Shatsauskas
b   Department of Organic Chemistry, Omsk F.M. Dostoevsky State University, 55a Mira Ave, 644077, Omsk, Russian Federation
,
Vyacheslav L. Yurpalov
c   Center of New Chemical Technologies BIC, 54 Neftezavodskaya St., 644040 Omsk, Russian Federation
,
Alexander S. Fisyuk
a   Laboratory of New Organic Materials, Omsk State Technical University, 11 Mira Ave, 644050, Omsk, Russian Federation
› Author Affiliations
This work was supported by the Russian Science Foundation (Grant No. 20-73-10043).


Abstract

4-{[(2-Iodoaryl)oxy]methyl}thiophene-2-carbaldehydes and 5-iodo-4-(aryloxymethyl)thiophene-2-carbaldehydes were obtained by the reaction of phenols with 4-(chloromethyl)thiophene-2-carbaldehyde or its 5-iodo analogue, respectively. These products underwent ring closure upon irradiation with UV light (254 nm) to form the corresponding 4H-thieno[3,2-c]chromene-2-carbaldehydes in high yield. The formation of intermediate radical species was detected by EPR spectroscopy. Comparative analysis of ring-closure methods showed that photochemical cyclization of 5-iodo-4-(aryloxymethyl)thiophene-2-carbaldehyde is superior to Pd-catalyzed intramolecular arylation. A series of substituted 4H-thieno[3,2-c]chromene-2-carbaldehydes were synthesized by the photochemical cyclization of the corresponding precursors, and the photophysical properties of the products were studied. The 4H-thieno[3,2-c]chromene-2-carbaldehydes can be used as covert marking pigments.

Supporting Information



Publication History

Received: 16 January 2021

Accepted after revision: 16 February 2021

Accepted Manuscript online:
16 February 2021

Article published online:
23 April 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Makisumi Y. JP Pat. Appl 48-000596, 1973 ; Chem. Abstr. 1973, 78, 72096u
    • 1b Makisumi Y. JP Pat. Appl 49-075599, ; Chem. Abstr. 1975, 83, 164152r
    • 2a Rimbault CG. Eur. Pat. Appl 0193493, 1986
    • 2b Webber SE, Widdicombe JG. Agents Actions 1988; 24: 65
    • 2c Rogers DE, Godfrey RW. A, Castro K, Majumdar S, Jeffery PK. Agents Actions 1991; 33: 359
  • 3 Han Q, Pabba PK, Barbosa J, Mabon R, Healy JP, Gardyan MW, Terranova KM, Brommage R, Thompson AY, Schmidt JM, Wilson AG. E, Xu X, Tarver JE. Jr, Carson KG. Bioorg. Med. Chem. Lett. 2016; 26: 1184
  • 4 Hegab MI, Abdulla MM. Arch. Pharm. (Weinheim, Ger.) 2006; 339: 41
    • 5a Bogza YP, Katsiel’ AL, Sharypova AN, Tolstikova TG, Fisyuk AS. Chem. Heterocycl. Compd. 2015; 50: 1712
    • 5b Fisyuk AS, Bogza YP, Tolstikova TG. RU 2571094, 2015
  • 6 Taguchi M, Suzuki R, Mikami A. WO 2006080439, 2006
    • 7a Staben ST, Siu M, Goldsmith R, Olivero AG, Do S, Burdick DJ, Heffron TP, Dotson J, Sutherlin DP, Zhu B.-Y, Tsui V, Le H, Lee L, Lesnick J, Lewis C, Murray JM, Nonomiy J, Pang J, Prior WW, Salphati L, Rouge L, Sampath D, Sideris S, Wiesmann C, Wue P. Bioorg. Med. Chem. Lett. 2011; 21: 4054
    • 7b Peng W, Paulson JC. J. Am. Chem. Soc. 2017; 139: 12450
    • 7c Xu Y, Han X, Wang X. WO 2019072045, 2019
    • 7d Xu Y, Zhu L. WO 2019154306, 2019
    • 7e Smith AL, Brennan PE, Demorin FF, Liu G, Paras NA, Retz DM. WO 2006066172, 2006
  • 8 Zhu Z, Zhou X, Wang Y, Chi L, Ruan D, Xuan Y, Cong W, Jin L. Analyst 2014; 139: 2764
    • 9a Li X, Huang H, Peng Z, Sun C, Yang D, Zhou J, Liebman-Pelaez A, Zhu C, Zhang Z.-G, Zhang Z, Xie Z, Ade H, Li Y. J. Mater. Chem. A 2018; 6: 15933
    • 9b Wen S, Wu Y, Wang Y, Li Y, Liu L, Jiang H, Liu Z, Yang R. ChemSusChem 2018; 11: 360
    • 9c Wu H, Fan H, Xu S, Ye L, Guo Y, Yi Y, Ade H, Zhu X. Small 2019; 15: 1
    • 9d Xiao Z, Yang S, Yang Z, Yang J, Yip HL, Zhang F, He F, Wang T, Wang J, Yuan Y, Yang H, Wang M, Ding L. Adv. Mater. 2019; 31: 1
    • 10a He X.-K, Cai B.-G, Yang Q.-Q, Wang L, Xuan J. Chem. Asian J. 2019; 14: 3269
    • 10b Sperança A, Godoi B, Costa MD, Menezes PH, Zeni G. Tetrahedron Lett. 2019; 52: 388
    • 10c Barbosa J, Carson KG, Gardyan MW, Healy P, Han Q, Mabon R, Pabba P, Tarver JJr, Terranova KM, Tunoori A, Xu X. US 20120302562, 2012
  • 11 Katsiel AL, Sharipova AN, Fisyuk AS. Mendeleev Commun. 2008; 18: 169
  • 12 Fisyuk AS, Bogza YP, Belyaeva LV, Belyaev VB. Chem. Heterocycl. Compd. 2012; 48: 1078
    • 13a Kunz T, Knochel P. Angew. Chem. Int. Ed. 2012; 51: 1958
    • 13b Mori A, Arai N, Hatta T, Monguchi D. Heterocycles 2010; 80: 103
    • 13c Reddy CR, Valleti RR, Reddy MD. J. Org. Chem. 2013; 78: 6495
    • 13d Do S, Goldsmith R, Heffron T, Kolesnikov A, Staben S, Olivero AG, Siu M, Sutherlin DP, Zhu B.-Y, Goldsmith P, Bayliss T, Folkes A, Pegg N. US 20090247567, 2009
    • 13e Lipshutz BH, Kayser F, Maullin N. Tetrahedron Lett. 1994; 35: 815
  • 14 5-Iodo-4-(aryloxymethyl)thiophene-2-carbaldehydes 6ao; General Procedure K2CO3 (138 mg, 1 mmol) and KI (17 mg, 0.1 mmol) were added to a solution of the appropriate phenol 4ao (1.1 mmol) and aldehyde 2 (287 mg, 1 mmol) in anhyd DMF (3 mL) under an inert atmosphere, and the mixture was stirred for 60 h. The resulting mixture was poured into cold H2O and extracted with Et2O (3 × 5 mL). The organic layer was washed sequentially with H2O and brine, dried (MgSO4), and concentrated in vacuum. Crystalline products were purified by recrystallization from EtOH whereas liquid products were purified by column chromatography.
  • 15 Gol’dfarb YL, Karmanova IB, Vol’kenshtein YB, Belen’kii LI. Chem. Heterocycl. Compd. 1978; 11: 1196
    • 16a Wolf W, Kharasch N. J. Org. Chem. 1965; 30: 2493
    • 16b Martelli G, Spagnolo P, Tiecco M. J. Chem. Soc. B 1968; 901
    • 16c D’Auria M, De Mico A, D’Onofrio F, Piancatelli G. J. Chem. Soc., Perkin Trans. 1 1987; 1777
  • 17 Thieno[3,2-c]chromene-2-carbaldehydes 7ap; General Procedure The appropriate ether 5a or 6ao (1 mmol) was dissolved in anhyd MeCN (100 mL) and the solution was added to a 2.5 cm-diameter quartz tube with a volume of 150 mL. The stirred solution was irradiated by four low-pressure Hg lamps (Philips TUV G8 T5, λmax = 254 nm; 32W in total) while it was cooled by a fan. The solvent was then evaporated in vacuum, and the residue was purified by column chromatography. 8-Fluoro-4H-thieno[3,2-c]chromene-2-carbaldehyde (7l) Yellow solid; yield: 150 mg (64%); mp 170–171 °С (EtOH). IR (KBr): 1656 (С=O) cm–1. 1H NMR (400 MHz, CDCl3): δ = 5.27 (s, 2 H, CH2). 6.91–7.01 (m, 2 H, H-6,7), 7.10 (dd, 3 J = 8.12, 4 J = 2.64, 1 H, H-9), 7.55 (s, H-3, 1 H), 9.88 (s, 1 H, CHO). 13C NMR (101 MHz, CDCl3): δ = 65.50, 110.28, 117.60, 118.30, 119.80, 132.69, 133.38, 141.28, 142.05, 148.82, 157.43, 182.86.
  • 18 Buchachenko AL, Wasserman AM. In Khimija, 1st ed. Moscow, 1973; 409
  • 19 Bogza YP, Rastrepin AA, Nider VV, Zheleznova TY, Stasyuk AJ, Kurowska A, Laba K, Ulyankin EB, Domagala W, Fisyuk AS. Dyes Pigm. 2018; 159: 419