Synlett
DOI: 10.1055/a-1405-7012
account
Perspectives on Organoheteroatom and Organometallic Chemistry

Perspective on Organoboron Chemistry

Lingbing Kong
a  School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. of China
b  State Key Laboratory of Elemento-organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, P. R. of China
,
Chunming Cui
b  State Key Laboratory of Elemento-organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, P. R. of China
› Author Affiliations
We gratefully acknowledge financial support from the National Natural Science Foundation of China (Grants 21971144 and 21632006), the Key R&D Program of Shandong Province (Grant 2019GGX102032), the Natural Science Foundation of Shandong Province (Grant ZR2019ZD46), and the Multidisciplinary Research and Innovation Team of Young Scholars of Shandong University (Grant 2020QNQT007).


Dedicated to the 100th anniversary of Chemistry at Nankai University

Abstract

Organoboron compounds play prominent roles in structural, synthetic, and materials chemistry because boron atoms can feature electrophilic, ambiphilic, or nucleophilic character. This perspective briefly describes the most recent progress in organoboron chemistry, focusing on new boron molecules and their applications that have attracted great interest from main-group chemists. The research hotspots arising from these pioneering results are also discussed.

1 Introduction

2 Diboron Reagents

3 Boryl Anions

4 Borylenes

5 Nucleophilic or Ambiphilic Boron-Containing N-Heterocycles

6 Conclusions and Outlook



Publication History

Received: 29 January 2021

Accepted after revision: 04 March 2021

Publication Date:
04 March 2021 (online)

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Synthesis and Application of Organoboron Compounds . Fernández E, Whiting A. Springer International Publishing; Cham: 2015
  • 2 Stephan DW. Chem. 2020; 6: 1520
  • 3 Wade CR, Broomsgrove AE. J, Aldridge S, Gabbaï FP. Chem. Rev. 2010; 110: 3958

    • For selected reviews, see:
    • 4a Hirai M, Tanaka N, Sakai M, Yamaguchi S. Chem. Rev. 2019; 119: 8291
    • 4b Ji L, Griesbeck S, Marder TB. Chem. Sci. 2017; 8: 846
    • 4c Jäkle F. Chem. Rev. 2010; 110: 3985
  • 5 Dewhurst RD, Neeve EC, Braunschweig H, Marder TB. Chem. Commun. 2015; 51: 9594
  • 6 Bissinger P, Braunschweig H, Damme A, Dewhurst RD, Kupfer T, Radacki K, Wagner K. J. Am. Chem. Soc. 2011; 133: 19044
    • 7a Katsuma Y, Asakawa H, Yamashita M. Chem. Sci. 2018; 9: 1301
    • 7b Kojima C, Lee K.-H, Lin Z, Yamashita M. J. Am. Chem. Soc. 2016; 138: 6662
    • 7c Katsuma Y, Asakawa H, Lee K.-H, Lin Z, Yamashita M. Organometallics 2016; 35: 2563
    • 7d Asakawa H, Lee K.-H, Lin Z, Yamashita M. Nat. Commun. 2014; 5: 4245
  • 8 Schön F, Greb L, Kaifer E, Himmel H.-J. Angew. Chem. Int. Ed. 2020; 59: 9127
  • 9 Arrowsmith M, Böhnke J, Braunschweig H, Celik MA. Angew. Chem. Int. Ed. 2017; 56: 14287
  • 10 Lu W, Li Y, Ganguly R, Kinjo R. J. Am. Chem. Soc. 2017; 139: 5047
    • 11a Lu W, Li Y, Ganguly R, Kinjo R. J. Am. Chem. Soc. 2018; 140: 1255
    • 11b Lu W, Kinjo R. Chem. Commun. 2018; 54: 8842
    • 11c Lu W, Kinjo R. Chem. Eur. J. 2018; 24: 15656
  • 12 Stennett TE, Mattock JD, Vollert I, Vargas A, Braunschweig H. Angew. Chem. Int. Ed. 2018; 57: 4098
  • 13 Fan J, Mah J.-Q, Yang M.-C, Su M.-DSo C.-W. J. Am. Chem. Soc. 2021; in press DOI: 10.1021/jacs.0c12627.
  • 14 Lu W, Li Y, Ganguly R, Kinjo R. Angew. Chem. Int. Ed. 2017; 56: 9829
  • 15 Lu W, Xu K, Li Y, Hirao H, Kinjo R. Angew. Chem. Int. Ed. 2018; 57: 15691
  • 16 Böhnke J, Arrowsmith M, Braunschweig H. J. Am. Chem. Soc. 2018; 140: 10368
  • 17 Braunschweig H, Dewhurst RD, Schneider A. Chem. Rev. 2010; 110: 3924
  • 18 Dang L, Lin Z, Marder TB. Chem. Commun. 2009; 3987
  • 19 Segawa Y, Yamashita M, Nozaki K. Science 2006; 314: 113
  • 20 Segawa Y, Suzuki Y, Yamashita M, Nozaki K. J. Am. Chem. Soc. 2008; 130: 16069 ; corrigendum: J. Am. Chem. Soc. 2009, 131, 9600
  • 21 Braunschweig H, Burzler M, Dewhurst RD, Radacki K. Angew. Chem. Int. Ed. 2008; 47: 5650
  • 22 Braunschweig H, Chiu C.-W, Radacki K, Kupfer T. Angew. Chem. Int. Ed. 2010; 49: 2041
  • 23 Ruiz DA, Ung G, Melaimi M, Bertrand G. Angew. Chem. Int. Ed. 2013; 52: 7590
  • 24 Lu W, Hu H, Li Y, Ganguly R, Kinjo R. J. Am. Chem. Soc. 2016; 138: 6650
  • 25 Arrowsmith M, Mattock JD, Hagspiel S, Krummenacher I, Vargas A, Braunschweig H. Angew. Chem. Int. Ed. 2018; 57: 15272
  • 26 Cid J, Gulyás H, Carbó JJ, Fernández E. Chem. Soc. Rev. 2012; 41: 3558
  • 27 Protchenko AV, Birjkumar KH, Dange D, Schwarz AD, Vidovic D, Jones C, Kaltsoyannis N, Mountford P, Aldridge S. J. Am. Chem. Soc. 2012; 134: 6500
  • 28 Protchenko AV, Dange D, Harmer JR, Tang CY, Schwarz AD, Kelly MJ, Phillips N, Tirfoin R, Birjkumar KH, Jones C, Kaltsoyannis N, Mountford P, Aldridge S. Nat. Chem. 2014; 6: 315
  • 29 Rit A, Campos J, Niu H, Aldridge S. Nat. Chem. 2016; 8: 1022
  • 30 Asami S.-s, Okamoto M, Suzuki K, Yamashita M. Angew. Chem. Int. Ed. 2016; 55: 12827
  • 31 Asami S.-s, Ishida S, Iwamoto T, Suzuki K, Yamashita M. Angew. Chem. Int. Ed. 2017; 56: 1658
  • 32 Tian M, Zhang J, Yang H, Cui C. J. Am. Chem. Soc. 2020; 142: 4131
  • 33 Soleilhavoup M, Bertrand G. Angew. Chem. Int. Ed. 2017; 56: 10282
  • 34 Dahcheh F, Martin D, Stephan DW, Bertrand G. Angew. Chem. Int. Ed. 2014; 53: 13159
  • 35 Ledet AD, Hudnall TW. Dalton Trans. 2016; 45: 9820
  • 36 Pranckevicius C, Jimenéz-Halla JO. C, Kirsch M, Krummenacher I, Braunschweig H. J. Am. Chem. Soc. 2018; 140: 10524
  • 37 Légaré M.-A, Pranckevicius C, Braunschweig H. Chem. Rev. 2019; 119: 8231
  • 38 Légaré M.-A, Bélanger-Chabot G, Dewhurst RD, Welz E, Krummenacher I, Engels B, Braunschweig H. Science 2018; 359: 896
  • 39 Légaré M.-A, Rang M, Bélanger-Chabot G, Schweizer JI, Krummenacher I, Bertermann R, Arrowsmith M, Holthausen MC, Braunschweig H. Science 2019; 363: 1329
  • 40 Légaré M.-A, Bélanger-Chabot G, Rang M, Dewhurst RD, Krummenacher I, Bertermann R, Braunschweig H. Nat. Chem. 2020; 12: 1076
  • 41 Kinjo R, Donnadieu B, Celik MA, Frenking G, Bertrand G. Science 2011; 333: 610
  • 42 Ruiz DA, Melaimi M, Bertrand G. Chem. Commun. 2014; 50: 7837
    • 43a Kong L, Li Y, Ganguly R, Vidovic D, Kinjo R. Angew. Chem. Int. Ed. 2014; 53: 9280
    • 43b Kong L, Lu W, Li Y, Ganguly R, Kinjo R. Inorg. Chem. 2017; 56: 5586
    • 43c Kong L, Lu W, Li Y, Ganguly R, Kinjo R. J. Am. Chem. Soc. 2016; 138: 8623
    • 43d Kong L, Lu W, Li Y, Ganguly R, Kinjo R. Angew. Chem. Int. Ed. 2016; 55: 14718
  • 44 Kong L, Ganguly R, Li Y, Kinjo R. Chem. Sci. 2015; 6: 2893
    • 45a Pranckevicius C, Herok C, Fantuzzi F, Engels B, Braunschweig H. Angew. Chem. Int. Ed. 2019; 58: 12893
    • 45b Arrowsmith M, Schweizer JI, Heinz M, Härterich M, Krummenacher I, Holthausen MC, Braunschweig H. Chem. Sci. 2019; 10: 5095
    • 45c Arrowsmith M, Auerhammer D, Bertermann R, Braunschweig H, Bringmann G, Celik MA, Dewhurst RD, Finze M, Grüne M, Hailmann M, Hertle T, Krummenacher I. Angew. Chem. Int. Ed. 2016; 55: 14464
  • 46 Wang H, Zhang J, Lin Z, Xie Z. Chem. Commun. 2015; 51: 16817
  • 47 Wang H, Wu L, Lin Z, Xie Z. J. Am. Chem. Soc. 2017; 139: 13680
  • 48 Wang H, Zhang J, Lee HK, Xie Z. J. Am. Chem. Soc. 2018; 140: 3888
  • 49 Braunschweig H, Dewhurst RD, Hupp F, Nutz M, Radacki K, Tate CW, Vargas A, Ye Q. Nature 2015; 522: 327
  • 50 Kong L, Ganguly R, Li Y, Kinjo R. Chem. Eur. J. 2016; 22: 1922
  • 51 Wang H, Wu L, Lin Z, Xie Z. Angew. Chem. Int. Ed. 2018; 57: 8708

    • For selected reviews, see:
    • 52a McConnell CR, Liu S.-Y. Chem. Soc. Rev. 2019; 48: 3436
    • 52b Giustra ZX, Liu S.-Y. J. Am. Chem. Soc. 2018; 140: 1184
    • 53a Su Y, Kinjo R. Chem. Soc. Rev. 2019; 48: 3613
    • 53b Su B, Kinjo R. Synthesis 2017; 49: 2985
  • 54 Su B, Li Y, Ganguly R, Lim J, Kinjo R. J. Am. Chem. Soc. 2015; 137: 11274
  • 55 Wu D, Kong L, Li Y, Ganguly R, Kinjo R. Nat. Commun. 2015; 6: 7340
    • 56a Wu D, Li Y, Ganguly R, Kinjo R. Chem. Commun. 2017; 53: 12734
    • 56b Wu D, Ganguly R, Li Y, Hoo SN, Hirao H, Kinjo R. Chem. Sci. 2015; 6: 7150
  • 57 Wu D, Wang R, Li Y, Ganguly R, Hirao H, Kinjo R. Chem. 2017; 3: 134
  • 58 Wang B, Li Y, Ganguly R, Hirao H, Kinjo R. Nat. Commun. 2016; 7: 11871
    • 59a Wang B, Kinjo R. Chem. Sci. 2019; 10: 2088
    • 59b Wang B, Koshino K, Kinjo R. Chem. Commun. 2019; 55: 13012
    • 59c Wang B, Kinjo R. Tetrahedron 2018; 74: 7273
  • 60 Su Y, Li Y, Ganguly R, Kinjo R. Angew. Chem. Int. Ed. 2018; 57: 7846
  • 61 Su Y, Do DC. H, Li Y, Kinjo R. J. Am. Chem. Soc. 2019; 141: 13729
  • 62 Ota K, Kinjo R. Angew. Chem. Int. Ed. 2020; 59: 6572