Subscribe to RSS
DOI: 10.1055/a-1409-2734
Strategies of In Situ Generated Magnesium Catalysis in Asymmetric Reactions
We acknowledge financial support from the National Natural Science Foundation of China (NSFC; 21901092), the Innovation fund for medical sciences (2019-12M-5-074), the Funds for Fundamental Research Creative Groups of Gansu Province (20JR5RA310), and the Fundamental Research Funds for the Central Universities (lzujbky-2020-49).
Abstract
Magnesium (Mg) is a cheap, non-toxic, and recyclable alkaline earth metal that constitutes about 2% weight in the Earth’s crust. The use of magnesium catalysts to forge chiral moieties in molecules is highly attractive. Based on our work in recent years, we describe the current progress in the development of in situ generated magnesium catalysts and their application in asymmetric synthesis. In this perspective, a critically concise classification of in situ generated magnesium catalytic modes, with relevant examples, is presented, and representative mechanisms of each category are discussed. Building on the established diverse strategies, one can foresee that more innovative and structurally creative magnesium catalysts that are generated in situ will be developed to overcome more formidable challenges of catalytic enantioselective reactions.
1 Introduction
2 Magnesium Catalysts Generated in Situ from Chiral Ligands Containing Dual Reactive Hydrogens
3 Magnesium Catalysts Generated in Situ from Monoanionic Chiral Ligands
4 Bimetallic and Polymetallic Magnesium Catalysts Assembled in Situ
5 Summary and Outlook
Key words
magnesium - in situ assembly - asymmetric synthesis - catalytic strategies - chiral ligandPublication History
Received: 04 January 2021
Accepted after revision: 05 March 2021
Accepted Manuscript online:
05 March 2021
Article published online:
07 April 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1 Harder S. Early Main Group Metal Catalysis—Concepts and Reactions. Weinheim: Wiley-VCH; 2020
- 2a Yang D, Wang L, Li D, Wang R. Chem 2019; 5: 1108
- 2b Pellissier H. Org. Biomol. Chem. 2017; 15: 4750
- 2c Hill MS, Liptrot DJ, Weetman C. Chem. Soc. Rev. 2016; 45: 972
- 2d Rochat R, Lopez MJ, Tsurugi H, Mashima K. ChemCatChem 2016; 8: 10
- 3a Shang M, Chan J, Cao M, Chang Y, Wang Q, Cook B, Torker S, Wasa M. J. Am. Chem. Soc. 2018; 140: 10593
- 3b Mori K, Isogai R, Kamei Y, Yamanaka M, Akiyama T. J. Am. Chem. Soc. 2018; 140: 6203
- 3c Wang D.-C, Xie M.-S, Guo H.-M, Qu G.-R, Zhang M.-C, You S.-L. Angew. Chem. Int. Ed. 2016; 55: 14111
- 3d De Rycke ND, St Denis JD, Hughes JM. E, Rosadiuk KA, Gleason JL. Synlett 2014; 25: 2802
- 4a Li D, Wang K, Wang L, Wang Y, Wang P, Liu X, Yang D, Wang R. Org. Lett. 2017; 19: 3211
- 4b Wang L, Li D, Yang D, Wang K, Wang J, Wang P, Su W, Wang R. Chem. Asian J. 2016; 11: 691
- 4c Li D, Wang Y, Wang L, Wang J, Wang P, Wang K, Lin L, Liu D, Jiang X, Yang D. Chem. Commun. 2016; 52: 9640
- 4d Li D, Wang L, Yang D, Zhang B, Wang R. ACS Catal. 2015; 5: 7432
- 4e Wang L, Yang D, Li D, Wang R. Org. Lett. 2015; 17: 3004
- 4f Lu G, Yoshino T, Morimoto H, Matsunaga S, Shibasaki M. Angew. Chem. Int. Ed. 2011; 50: 4382
- 4g Bao H, Wu J, Li H, Wang Z, You T, Ding K. Eur. J. Org. Chem. 2010; 6722
- 4h Yoshino T, Morimoto H, Lu G, Matsunaga S, Shibasaki M. J. Am. Chem. Soc. 2009; 131: 17082
- 5 Hatano M, Horibe T, Ishihara K. Org. Lett. 2010; 12: 3502
- 6 Yang D, Wang L, Han F, Zhao D, Zhang B, Wang R. Angew. Chem. Int. Ed. 2013; 52: 6739
- 7 Falconnet A, Magre M, Maity B, Cavallo L, Rueping M. Angew. Chem. Int. Ed. 2019; 58: 17567
- 8a Titze M, Heitkämper J, Junge T, Kästner J, Peters R. Angew. Chem. Int. Ed. 2020; 60: 5544
- 8b Liu W, Guo J, Xing S, Lu Z. Org. Lett. 2020; 22: 2532
- 8c Vasiilenko V, Blasius CK, Wadepohl H, Gade LH. Chem. Commun. 2020; 56: 1203
- 8d Vasiilenko V, Blasius CK, Wadepohl H, Gade LH. Angew. Chem. Int. Ed. 2017; 56: 8393
- 9a Gentner TX, Rçsch B, Ballmann G, Langer J, Elsen H, Harder S. Angew. Chem. Int. Ed. 2019; 58: 607
- 9b Rauch M, Parkin G. J. Am. Chem. Soc. 2017; 139: 18162
- 9c Baishya A, Peddarao T, Nembenna S. Dalton Trans. 2017; 5880
- 9d Mukherjee D, Shirase S, Spaniol TP, Mashimab K, Okuda J. Chem. Commun. 2016; 52: 13155; and references therein
- 10a Li D, Yang Y, Zhang M, Wang L, Xu Y, Yang D, Wang R. Nat. Commun. 2020; 11: 2559
- 10b Li D, Zhang M, Yang Y, Peng T, Yang D, Gao W, Wang R. Org. Lett. 2020; 22: 9229
- 11a Zhang H.-J, Yin L. J. Am. Chem. Soc. 2018; 140: 12270
- 11b Zhong F, Yue W.-J, Zhang H.-J, Zhang C.-Y, Yin L. J. Am. Chem. Soc. 2018; 140: 15170
- 11c Zhang H.-J, Shi C.-Y, Zhong F, Yin L. J. Am. Chem. Soc. 2017; 139: 2196
- 12a Li D, Wang L, Yang Y, Zhang M, Peng T, Yang D, Wang R. Adv. Synth. Catal. 2019; 361: 3744
- 12b Wang K, Wang L, Liu X, Li D, Zhu H, Wang P, Liu Y, Yang D, Wang R. Org. Lett. 2017; 19: 4351
- 12c Wang L, Yang D, Li D, Wang P, Wang K, Wang J, Jiang X, Wang R. Chem. Eur. J. 2016; 22: 8483
- 13a Grassi D, Dolka C, Jackowski O, Alexakis A. Chem. Eur. J. 2013; 19: 1466
- 13b Grassi D, Alexakis A. Angew. Chem. Int. Ed. 2013; 52: 13642
- 13c Jackowski O, Alexakis A. Angew. Chem. Int. Ed. 2010; 49: 3346
- 14a Wang L, Yang D, Li D, Zhu H, Wang P, Liu X, Bai L, Wang R. Adv. Synth. Catal. 2018; 360: 4491
- 14b Li D, Yang D, Wang L, Liu X, Jiang X, Wang R. Chem. Eur. J. 2016; 22: 17141
- 14c Yang D, Wang L, Han F, Li D, Zhao D, Wang R. Angew. Chem. Int. Ed. 2015; 54: 2185
- 15 Yang D, Wang L, Kai M, Li D, Yao X, Wang R. Angew. Chem. Int. Ed. 2015; 54: 9523
- 16a Zhuo C.-X, Zheng C, You S.-L. Acc. Chem. Res. 2014; 47: 2558
- 16b Zhuo C.-X, Zhang W, You S.-L. Angew. Chem. Int. Ed. 2012; 51: 12662
- 16c Roche SP, Porco JA. Jr. Angew. Chem. Int. Ed. 2011; 50: 4068
- 17 Li D, Wang L, Zhu H, Bai L, Yang Y, Zhang M, Yang D, Wang R. Org. Lett. 2019; 21: 4717
- 18a Satyanarayana T, Abraham S, Kagan HB. Angew. Chem. Int. Ed. 2009; 48: 456
- 18b Girard C, Kagan HB. Angew. Chem. Int. Ed. 1998; 37: 2922
- 19 Trost BM, Hung CJ, Mata G. Angew. Chem. Int. Ed. 2020; 59: 4240
- 20a Trost BM, Malhotra S, Koschker P, Ellerbrock P. Org. Lett. 2013; 3: 440
- 20b Trost BM, Malhotra S, Koschker P, Ellerbrock P. J. Am. Chem. Soc. 2012; 134: 2075
- 20c Trost BM, Malhotra S, Fried BA. J. Am. Chem. Soc. 2009; 131: 1674
- 21a Yoshida M, Sassa N, Kato T, Fujinami S, Soeta T, Inomata K, Ukaji Y. Chem. Eur. J. 2014; 20: 2058
- 21b Sakai T, Soeta T, Endo K, Fujinami S, Ukaji Y. Org. Lett. 2013; 15: 2422
- 23a Hatano M, Horibe T, Yamashita K, Ishihara K. Asian J. Org. Chem. 2013; 2: 952
- 23b Hatano M, Horibe T, Ishihara K. Angew. Chem. Int. Ed. 2013; 52: 4549
- 24 Wang L, Yang D, Li D, Liu X, Wang P, Wang K, Zhu H, Bai L, Wang R. Angew. Chem. Int. Ed. 2018; 57: 9088
- 25 Hatano M, Nishikawa K, Ishihara K. J. Am. Chem. Soc. 2017; 139: 8424
- 26a Martell JD, Porter-Zasada LB, Forse AC, Siegelman RL, Gonzalez MI, Oktawiec J, Runcevski T, Xu J, Srebro-Hooper M, Milner PJ, Colwell KA, Autschbach J, Reimer JA, Long JR. J. Am. Chem. Soc. 2017; 139: 16000
- 26b Manna K, Ji P, Greene FX, Lin W. J. Am. Chem. Soc. 2016; 138: 7488
- 26c Xiao Y, Wang Z, Ding K. Macromolecules 2006; 39: 128
For recent examples of the use of Box-Mg(II) in enantioselective synthesis, see:
For recent examples of enantioselective hydroboration of ketones, see:
For recent examples, see:
For elegant examples of Cu-catalyzed intermolecular asymmetric vinylogous reactions of allylic esters, see:
For recent examples, see:
For reviews on catalytic asymmetric dearomatization reactions, see: