Synlett 2022; 33(02): 161-165
DOI: 10.1055/a-1470-6050
letter
EuCheMS Organic Division Young Investigator Workshop

Highly Fluorinated Trianglimine Macrocycles: A Supramolecular Organic Framework

Tom Kunde
a   Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
,
Tobias Pausch
a   Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
,
Guido J. Reiss
b   Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
,
a   Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
› Author Affiliations
This work was supported by the Fonds der Chemischen Industrie by a Kekulé Fellowship (T.K.), by the North Rhine-Westphalian Academy of Sciences, Humanities and the Arts (B.M.S.), and the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) (SCHM 3101/5-1).


Abstract

A novel highly fluorinated dialdehyde was prepared by a two-stage synthesis. This reactive building block for dynamic imine chemistry was used in a condensation reaction to generate the first extensively fluorinated trianglimine. An analysis of the material properties and, especially, the crystal structure of the [3+3] macrocycle revealed a supramolecular organic framework with tubular porous channels. The use of fluorinated ligands to generate hydrophobic electron-deficient channel-like pores is an important addition to the ever-expanding field of supramolecular networks and to trianglimine chemistry in general.

Supporting Information



Publication History

Received: 18 March 2021

Accepted after revision: 30 March 2021

Accepted Manuscript online:
30 March 2021

Article published online:
20 April 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Rosi NL, Eckert J, Eddaoudi M, Vodak DT, Kim J, O’Keeffe M, Yaghi OM. Science 2003; 300: 1127
    • 1b Chen T.-H, Popov I, Chuang Y.-C, Chen Y.-S, Miljanić O. Š. Chem. Commun. 2015; 51: 6340
    • 1c Küsgens P, Zgaverdea A, Fritz H, Siegle S, Kaskel S. J. Am. Ceram. Soc. 2010; 93: 2476

    • For reviews, see:
    • 1d Yuan S, Feng L, Wang K, Pang J, Bosch M, Lollar C, Sun Y, Qin J, Yang X, Zhang P, Wang Q, Zou L, Zhang Y, Zhang L, Fang Y, Li J, Zhou H.-C. Adv. Mater (Weinheim, Ger.) 2018; 30: 1704303
    • 1e Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM. Science 2013; 341: 1230444
    • 1f James SL. Chem. Soc. Rev. 2003; 32: 276
    • 2a Vyas VS, Haase F, Stegbauer L, Savasci G, Podjaski F, Ochsenfeld C, Lotsch BV. Nat. Commun. 2015; 6: 8508
    • 2b Yang H, Du Y, Wan S, Trahan GD, Jin Y, Zhang W. Chem. Sci. 2015; 6: 4049
    • 2c Chen X, Addicoat M, Irle S, Nagai A, Jiang D. J. Am. Chem. Soc. 2013; 135: 546
    • 2d Doonan CJ, Tranchemontagne DJ, Glover TG, Hunt JR, Yaghi OM. Nat. Chem. 2010; 2: 235
    • 2e Uribe-Romo FJ, Hunt JR, Furukawa H, Klöck C, O’Keeffe M, Yaghi OM. J. Am. Chem. Soc. 2009; 131: 4570

    • For reviews, see:
    • 2f Beuerle F, Gole B. Angew. Chem. Int. Ed. 2018; 57: 4850
    • 2g Ding S.-Y, Wang W. Chem. Soc. Rev. 2013; 42: 548
    • 3a Yang W, Greenaway A, Lin X, Matsuda R, Blake AJ, Wilson C, Lewis W, Hubberstey P, Kitagawa S, Champness NR, Schröder M. J. Am. Chem. Soc. 2010; 132: 14457
    • 3b Tan L, Li H, Tao Y, Zhang SX, Wang B, Yang Y. Adv. Mater (Weinheim, Ger.) 2014; 26: 7027
    • 3c Lü J, Perez-Krap C, Suyetin M, Alsmail NH, Yan Y, Yang S, Lewis W, Bichoutskaia E, Tang CC, Blake AJ, Cao R, Schröder M. J. Am. Chem. Soc. 2014; 136: 12828
    • 3d Pfeffermann M, Dong R, Graf R, Zajaczkowski W, Gorelik T, Pisula W, Narita A, Müllen K, Feng X. J. Am. Chem. Soc. 2015; 137: 14525
    • 3e Chen T.-H, Kaveevivitchai W, Jacobson AJ, Miljanić O. Š. Chem. Commun. 2015; 51: 14096
    • 3f Huang Y.-G, Shiota Y, Wu M.-Y, Su S.-Q, Yao Z.-S, Kang S, Kanegawa S, Li G.-L, Wu S.-Q, Kamachi T, Yoshizawa K, Ariga K, Hong M.-C, Sato O. Nat. Commun. 2016; 7: 11564
    • 3g Zhang G, Li B, Zhou Y, Chen X, Li B, Lu Z.-Y, Wu L. Nat. Commun. 2020; 11: 425
    • 4a Yang H, Du Y, Wan S, Trahan GD, Jin Y, Zhang W. Chem. Sci. 2015; 6: 4049
    • 4b Hisaki I, Nakagawa S, Tohnai N, Miyata M. Angew. Chem. Int. Ed. 2015; 54: 3008
    • 4c Qi Z, Schalley CA. Acc. Chem. Res. 2014; 47: 2222
    • 4d Reuter R, Wegner HA. Chem. Commun. 2013; 49: 146
    • 4e Huang Z, Kang S.-K, Banno M, Yamaguchi T, Lee D, Seok C, Yashima E, Lee M. Science 2012; 337: 1521
    • 4f Venkataraman D, Lee S, Zhang J, Moore JS. Nature 1994; 371: 591
    • 5a Kuhnert N, Straßnig C, Lopez-Periago AM. Tetrahedron: Asymmetry 2002; 13: 123
    • 5b Kuhnert N, Lopez-Periago AM. Tetrahedron Lett. 2002; 43: 3329
    • 5c Kuhnert N, Burzlaff N, Patel C, Lopez-Periago A. Org. Biomol. Chem. 2005; 3: 1911
    • 5d Nour HF, Matei MF, Bassil BS, Kortz U, Kuhnert N. Org. Biomol. Chem. 2011; 9: 3258
    • 5e Wang Z, Nour HF, Roch LM, Guo M, Li W, Baldridge KK, Sue AC.-H, Olson MA. J. Org. Chem. 2017; 82: 2472
    • 5f Szymkowiak J, Warżajtis B, Rychlewska U, Kwit M. CrystEngComm 2018; 20: 5200
    • 5g Dey A, Chand S, Alimi LO, Ghosh M, Cavallo L, Khashab NM. J. Am. Chem. Soc. 2020; 142: 15823
    • 6a Gawroński J, Gawrońska K, Grajewski J, Kwit M, Plutecka A, Rychlewska U. Chem. Eur. J. 2006; 12: 1807
    • 6b Kuhnert N, Göbel D, Thiele C, Renault B, Tang B. Tetrahedron Lett. 2006; 47: 6915
    • 6c Nour HF, Matei MF, Bassil BS, Kortz U, Kuhnert N. Org. Biomol. Chem. 2011; 9: 3258
    • 6d Janiak A, Bardziński M, Gawroński J, Rychlewska U. Cryst. Growth Des. 2016; 16: 2779
    • 6e Chaix A, Mouchaham G, Shkurenko A, Hoang P, Moosa B, Bhatt PM, Adil K, Salama KN, Eddaoudi M, Khashab NM. J. Am. Chem. Soc. 2018; 140: 14571
    • 6f Huang T, Moosa BA, Hoang P, Liu J, Chisca S, Zhang G, AlYami M, Khashab NM, Nunes SP. Nat. Commun. 2020; 11: 5882
    • 6g Dey A, Chand S, Maity B, Bhatt PM, Ghosh M, Cavallo L, Eddaoudi M, Khashab NM. J. Am. Chem. Soc. 2021; 143: 4090
    • 7a Yang Z, Wang S, Zhang Z, Guo W, Jie K, Hashim MI, Miljanić O. Š, Jiang D.-e, Popovs I, Dai S. J. Mater. Chem. A 2019; 7: 17277
    • 7b Cadiau A, Belmabkhout Y, Adil K, Bhatt PM, Pillai RS, Shkurenko A, Martineau-Corcos C, Maurin G, Eddaoudi M. Science 2017; 356: 731
    • 7c Chen T.-H, Popov I, Kaveevivitchai W, Chuang Y.-C, Chen Y.-S, Jacobson AJ, Miljanić O. Š. Angew. Chem. Int. Ed. 2015; 54: 13902
    • 7d Chen T.-H, Popov I, Zenasni O, Daugulis O, Miljanić O. Š. Chem. Commun. 2013; 49: 6846
    • 7e Babudri F, Farinola GM, Naso F, Ragni R. Chem. Commun. 2007; 1003

    • For an excellent review, see:
    • 7f Zhang Z, Miljanić O. Š. Org. Mater. 2019; 1: 19
  • 8 Kaneko T. JP 2006273766, 2006
  • 9 Kolomeitsev AA, Seifert FU, Röschenthaler G.-V. J. Fluorine Chem. 1995; 71: 47
  • 10 Hérault D, Nguyen DH, Nuel D, Buono G. Chem. Soc. Rev. 2015; 44: 2508
  • 11 Supramolecular Organic Framework RRF24 A solution of DACH (91.4 mg, 800 μmol, 1.0 equiv) in MeCN (15 mL) was added dropwise to a stirred solution of dialdehyde 2 (283 mg, 800 μmol, 1.0 equiv) in MeCN (10 mL) over 1 h. The resulting solution was stirred overnight at r.t., and the precipitate that formed was collected by filtration and washed with MeCN (2 × 5 mL) to give a colorless powder; yield: 195 mg (150 μmol, 56%); mp 306.7 °C. FTIR (ATR): 2933.7 (w), 2862.4 (w), 1643.4 (w), 1469.8 (s), 1384.9 (w)1278.8 (m), 1263.4 (w), 1089.8 (w), 1033.9 (w), 987.6 (m), 927.8 (m), 862.2 (w), 723.3 (s) cm–1. 1H NMR (300 MHz, CDCl3): δ = 8.40 (s, 2 H, –CHAN), 3.84–3.22 (m, 2 H, CH–N=), 2.12–1.72 (m, 6 H, –C(HB)2– and C–HC), 1.75–1.34 (m, 2 H, C–HC). 13C{1H} NMR (126 MHz, CDCl3): δ = 149.7 (Ar–CHAO), 145.6 (dd, J = 257.3, 11.8 Hz, CAr–FA), 143.7 (dd, J = 254.5, 15.5 Hz, CAr–FB), 117.9 (t, J = 12.7 Hz, CAr–CHAO), 108.1 (t, J = 16.2 Hz, Ar–CAr), 76.0 (–C–N=), 32.4 (–C–HB), 24.3 (–C–HB). 19F NMR (282 MHz, CDCl3): δ –137.77 (dd, J = 16.8, 9.6 Hz, 4 F, Ar–FA), –142.38 to –143.31 (m, 4 F, Ar–FB). HRMS (ESI): m/z [M + H]+ Calcd for C60H37F24N6 = 1297.2691; found: 1297.2688.
    • 12a Dittrich B, Bergmann J, Roloff P, Reiss GJ. Crystals 2018; 8: 213
    • 12b Reiß GJ. Acta Crystallogr., Sect. E 2002; 58: m47
    • 13a Kunde T, Nieland E, Schröder HV, Schalley CA, Schmidt BM. Chem. Commun. 2020; 56: 4761
    • 13b Schmidt BM, Meyer AK, Lentz D. CrystEngComm 2017; 19: 1328