Synlett 2021; 32(12): 1236-1240
DOI: 10.1055/a-1529-4797
letter

Diastereoselective Synthesis of Morpholine Derivatives from Grignard Reagents and N-Sulfinyl Imines

Joseph M. Bateman
,
Diana Chan
,
,
,


Abstract

The stereoselective synthesis of substituted morpholine derivatives has been achieved through a two-step process involving diastereoselective addition of a Grignard reagent to a sulfinyl imine, followed by cyclization.

Supporting Information



Publication History

Received: 19 May 2021

Accepted after revision: 15 June 2021

Accepted Manuscript online:
15 June 2021

Article published online:
06 July 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Vitaku E, Smith DT, Njardarson JT. J. Med. Chem. 2014; 57: 10257
    • 1b Kumari A, Singh RK. Bioorg. Chem. 2020; 96: 103578
  • 2 Kourounakis AP, Xanthopoulos D, Tzara A. Med. Res. Rev. 2020; 40: 709
    • 3a Malagu K, Duggan H, Menear K, Hummersone M, Gomez S, Bailey C, Edwards P, Drzewiecki J, Leroux F, Quesada MJ, Hermann G, Maine S, Molyneaux C.-A, Le Gall A, Pullen J, Hickson I, Smith L, Maguire S, Martin N, Smith G, Pass M. Bioorg. Med. Chem. Lett. 2009; 19: 5950
    • 3b Foote KM, Nissink JW. M, McGuire T, Turner P, Guichard S, Yates JW. T, Lau A, Blades K, Heathcote D, Odedra R, Wilkinson G, Wilson Z, Wood CM, Jewsbury PJ. J. Med. Chem. 2018; 61: 9889
    • 4a Berg S, Larsson LG, Rényi L, Ross SB, Thorberg SO, Thorell-Svantesson G. J. Med. Chem. 1998; 41: 1934
    • 4b Hale JJ, Mills SG, MacCoss M, Finke PE, Cascieri MA, Sadowski S, Ber E, Chicchi GG, Kurtz M, Metzger J, Eiermann G, Tsou NN, Tattersall FD, Rupniak NM, Williams AR, Rycroft W, Hargreaves R, MacIntyre DE. J. Med. Chem. 1998; 41: 4607
    • 4c Arias HR, Fedorov NB, Benson LC, Lippiello PM, Gatto GJ, Feuerbach D, Ortells MO. J. Pharmacol. Exp. Ther. 2013; 344: 113
    • 4d Piotrowski DW, Futatsugi K, Casimiro-Garcia A, Wei L, Sammons MF, Herr M, Jiao W, Lavergne SY, Coffey SB, Wright SW, Song K, Loria PM, Banker ME, Petersen DN, Bauman J. J. Med. Chem. 2018; 61: 1086
    • 5a Betancort JM, Barbas CF. III. Org. Lett. 2001; 3: 3737
    • 5b Qin Y.-C, Pu L. Angew. Chem. Int. Ed. 2005; 45: 273
    • 5c Mayer S, List B. Angew. Chem. Int. Ed. 2006; 45: 4193
    • 5d Mosse S, Laars M, Kriis K, Kanger T, Alexakis A. Org. Lett. 2006; 8: 2559
    • 5e Nelson SG, Wang K. J. Am. Chem. Soc. 2006; 128: 4232

      For reviews, see:
    • 6a Palchykov VA. Russ. J. Org. Chem. 2013; 49: 807
    • 6b Palchykov VA, Chebanov VA. Chem. Heterocycl. Compd. 2019; 55: 324
    • 6c Tzara A, Xanthopoulos D, Kourounakis AP. ChemMedChem 2020; 15: 392
    • 7a Luescher MU, Vo C.-V, Bode JW. Org. Lett. 2014; 16: 1236
    • 7b Jackl MK, Legnani L, Morandi B, Bode JW. Org. Lett. 2017; 19: 4696
  • 8 McNally A, Prier CK, MacMillan DW. Science 2011; 334: 1114
    • 9a Bornholdt J, Felding J, Kristensen JL. J. Org. Chem. 2010; 75: 7454
    • 9b Sun H, Huang B, Lin R, Yang C, Xia W. Beilstein J. Org. Chem. 2015; 11: 524
    • 10a Yar M, McGarrigle EM, Aggarwal VK. Angew. Chem. Int. Ed. 2008; 47: 3784
    • 10b Yar M, McGarrigle EM, Aggarwal VK. Org. Lett. 2009; 11: 257
    • 10c Matlock JV, Svejstrup TD, Songara P, Overington S, McGarrigle EM, Aggarwal VK. Org. Lett. 2015; 17: 5044
  • 11 Leathen ML, Rosen BR, Wolfe JP. J. Org. Chem. 2009; 74: 5107
  • 12 Borah M, Borthakur U, Saikia AK. J. Org. Chem. 2017; 82: 1330
  • 13 Zhai H, Borzenko A, Lau YY, Ahn SH, Schafer LL. Angew. Chem. Int. Ed. 2012; 51: 12219

    • For reviews, see:
    • 14a Robak MT, Herbage MA, Ellman JA. Chem. Rev. 2010; 110: 3600
    • 14b Ferreira F, Botuha C, Chemla F, Pérez-Luna A. Chem. Soc. Rev. 2009; 38: 1162
    • 15a Denolf B, Mangelinckx S, Törnroos KW, De Kimpe N. Org. Lett. 2006; 8: 3129
    • 15b Reddy LR, Das SG, Liu Y, Prashad M. J. Org. Chem. 2010; 75: 2236
    • 15c Reddy LR, Prashad M. Chem. Commun. 2010; 46: 222
    • 15d Burtea A, Rychnovsky SD. Org. Lett. 2017; 19: 4195
  • 16 See the Supporting Information for further information. Poor diastereoselectivity might be also due to competition between open and chelated transition states with the oxygen atom (see ref. 24).
  • 17 Pflum DA, Krishnamurthy D, Han Z, Wald SA, Senanayake CH. Tetrahedron Lett. 2002; 43: 923
  • 18 Reichardt C, Weltons T. In In Solvent and Solvent Effects in Organic Chemistry, Fourth Edition Wiley-VCH; Weinheim: 2010: 165
  • 19 Davis FA, Prasad KR, Nolt MB, Wu Y. Org. Lett. 2003; 5: 925
  • 20 Krasovskiy A, Knochel P. Angew. Chem. Int. Ed. 2004; 43: 3333
  • 21 Rech JC, Yato M, Duckett D, Ember B, LoGrasso PV, Bergman RG, Ellman JA. J. Am. Chem. Soc. 2007; 129: 490
    • 22a Cogan DA, Liu G, Ellman J. Tetrahedron 1999; 55: 8883
    • 22b Foubelo F, Yus M. Tetrahedron: Asymmetry 2004; 15: 3823
  • 23 Fritz SP, Mumtaz A, Yar M, McGarrigle EM, Aggarwal VK. Eur. J. Org. Chem. 2011; 2011: 3156
  • 24 Kuduk SD, DiPardo RM, Chang RK, Ng C, Bock MG. Tetrahedron Lett. 2004; 45: 6641
  • 25 3-Substituted Morpholine Derivatives 4an; General Procedure AlMe3 (0.12 mL, 0.24 mmol, 1.1 equiv) was added dropwise to a stirred solution of sulfinyl imine 1 (50 mg, 0.22 mmol, 1.0 equiv) in MTBE (1.1 mL) at –78 °C, and the mixture was stirred for 30 minutes at –78 °C. The appropriate Grignard reagent (1.5 equiv) was then added dropwise and the mixture was stirred at –78 °C for 6 h. The reaction was quenched with sat aq NH4Cl and the mixture was diluted with H2O and extracted with EtOAc (3 × 15 mL). The combined organic extracts were washed with brine, dried (Na2SO4), filtered, and concentrated under reduced pressure. The residue was dissolved in THF (7.5 mL), and 18-crown-6 (29 mg, 0.11 mmol, 0.5 equiv) and a 60% dispersion of NaH in mineral oil (27 mg, 0.67 mmol, 3.0 equiv) were added. The mixture was then stirred at rt for 2 h before the reaction was quenched with sat aq NH4Cl. The mixture was extracted with EtOAc (3 × 10 mL) and the combined organic extracts were washed with brine, dried (Na2SO4), filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography [silica gel, heptane–EtOAc (9:1 to 0:1)]. (3S)-4-[(R)-tert-Butylsulfinyl]-3-phenylmorpholine (4a) White solid; yield: 45.0 mg (76%). 1H NMR (400 MHz, CDCl3): δ = 7.40–7.27 (m, 5 H), 4.22 (dd, J = 8.7, 3.4 Hz, 1 H), 3.99 (dtd, J = 11.4, 3.4, 1.0 Hz, 1 H), 3.87 (ddd, J = 11.7, 3.4, 1.0 Hz, 1 H), 3.84–3.73 (m, 2 H), 3.27–3.10 (m, 2 H), 1.14 (s, 9 H). 13C NMR (101 MHz, CDCl3): δ = 138.0, 129.2, 128.6, 128.4, 72.9, 66.7, 64.4, 58.5, 43.0, 24.4. HRMS (ESI): m/z [M + Na]+ calcd for C14H21NNaO2S: 290.1191; found: 290.1194.