Synlett 2021; 32(17): 1757-1761
DOI: 10.1055/a-1542-9683
letter

Cu-Catalyzed C–H Activation Reaction: One-Pot Direct Synthesis of Xanthine and Uric Acid Derivatives from 5-Bromouracil

Somjit Hazra
a   Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal, India
,
Biplab Mondal
a   Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal, India
,
Brindaban Roy
a   Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal, India
,
Habibur Rahaman
b   Department of Chemistry, Ranaghat College, Ranaghat, Nadia, West Bengal, 741201, India
› Author Affiliations
We thank the Department of Science and Technology, Ministry of Science and Technology, India (DST, New Delhi) for financial assistance through DST PURSE program and DST fast track scheme. Two of us (SH & BM) are thankful to CSIR (New Delhi) and University of Kalyani, respectively, for research fellowships.


Abstract

A one-pot direct synthesis of xanthine and uric acid derivates is reported. This simple yet efficient methodology illustrates concurrent formation of two C–N bonds using CuBr2 as catalyst and one of those C–N bonds is formed by uracil C6–H bond activation.

Supporting Information



Publication History

Received: 25 May 2021

Accepted after revision: 02 July 2021

Accepted Manuscript online:
02 July 2021

Article published online:
23 July 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Sadig JE. R, Willis MC. Synthesis 2011; 1
    • 1b Bellina F, Rossi R. Adv. Synth. Catal. 2010; 352: 1223
    • 1c Cho SH, Kim JY, Kwak J, Chang S. Chem. Soc. Rev. 2011; 40: 5068
    • 1d Schlummer B, Scholz U. Adv. Synth. Catal. 2004; 346: 1599
    • 1e Wu X.-F, Neumann H. Adv. Synth. Catal. 2012; 354: 3141
    • 1f Ranu BC, Dey R, Chatterjee T, Ahammed S. ChemSusChem 2012; 5: 22
    • 2a Kunz K, Scholz U, Ganzer D. Synlett 2003; 2428
    • 2b Ley SV, Thomas AW. Angew. Chem. Int. Ed. 2003; 42: 5400; Angew. Chem. 2003, 115, 5558
    • 2c Beletskaya IP, Cheprakov AV. Coord. Chem. Rev. 2004; 248: 2337
    • 2d Evano G, Blanchard N, Toumi M. Chem. Rev. 2008; 108: 3054 ; and references therein
    • 3a Wolfe JP, Wagaw S, Marcoux J.-F, Buchwald SL. Acc. Chem. Res. 1998; 31: 805
    • 3b Hartwig JF. Angew. Chem. Int. Ed. 1998; 37: 2046
    • 3c Yang BH, Buchwald SL. J. Organomet. Chem. 1999; 576: 125
    • 3d Surry DS, Buchwald SL. Angew. Chem. Int. Ed. 2008; 47: 6338
    • 3e Surry DS, Buchwald SL. Chem. Sci. 2011; 2: 27
    • 3f Muci AR, Buchwald SL. Top. Curr. Chem. 2002; 219: 131
    • 3g Schlummer B, Scholz U. Adv. Synth. Catal. 2004; 346: 1599
    • 3h Sperotto E, van Klink GP. M, van Kotenand G, de Vries JG. Dalton Trans. 2010; 39: 10338
    • 3i Monnier F, Taillefer M. Angew. Chem. Int. Ed. 2009; 48: 6954
    • 4a Tsang WC. P, Zheng N, Buchwald SL. J. Am. Chem. Soc. 2005; 127: 14560
    • 4b Thu H.-Y, Yu W.-Y, Che C.-M. J. Am. Chem. Soc. 2006; 128: 9048
    • 4c Xiao Q, Wang W. -H, Liu G, Meng F.-K, Chen J.-H, Yang Z, Shi Z.-J. Chem. Eur. J. 2009; 15: 7292
  • 5 Hazra S, Mondal B, Rahaman H, Roy B. Eur. J. Org. Chem. 2014; 2806
  • 6 Brasche G, Buchwald SL. Angew. Chem. Int. Ed. 2008; 47: 1932
    • 7a Kalla RV, Elzein E, Perry T, Li X, Palle V, Varkhedkar V, Gimbel A, Maa T, Zeng D, Zablocki J. J. Med. Chem. 2006; 49: 3682
    • 7b Lin R.-Y, Wu B.-N, Lo Y.-C, An L.-M, Dai Z.-K, Lin Y.-T, Tang C.-S, Chen I.-J. J. Pharmacol. Exp. Ther. 2006; 316: 709
    • 7c Ito K, Lim S, Caramori G, Cosio B, Chung KF, Adcock IM, Barnes PJ. Proc. Natl. Acad. Sci. U.S.A. 2002; 99: 8921
  • 8 Nicholson CD, Jackman SA, Wilke R. Br. J. Pharmacol. 1989; 97: 889
  • 9 Thiel M, Bardenheuer H, Poech G, Madel C, Peter K. Biochem. Res. Commun. 1991; 180: 53
  • 10 Palacios JM, Beleta J, Segarra V. Farmaco 1995; 50: 819
  • 11 Daly JW, Analogs of caffeine and theophylline: Activity as antagonists at adenosine receptors. In ‘Role of Adenosine and Adenine Nucleotides in the Biological System’. Imai S, Nakazawa M. Eds.; Elsevier Science Publishers; Amsterdam: 1991: 119-129
  • 12 Stefanovich V. Drug News Perspect. 1989; 2: 82
  • 13 Bright JJ, Du C, Coon M, Sriram S, Klaus SJ. J. Immunol. 1998; 161: 7051
  • 14 Daly JW, Fredholm BB. Drug Alcohol Depend. 1998; 51: 199
  • 16 Chu Y.-F, Chen Y, Brown PH, Lyle BJ, Black RM, Cheng IH, Ouc BX, Prior RL. Food Chem. 2012; 131: 564
  • 17 Arab L. Nutr. Cancer 2010; 62: 271
    • 18a Szczepankiewicz BG, Rohde JJ, Kurukulasuriya R. Org. Lett. 2005; 7: 1833
    • 18b Burbiel JC, Hockemeyer J, Müller CE. ARKIVOC 2006; (ii): 77
  • 19 Hirota K, Sako M, Sajiki H. Heterocycles 1997; 46: 547
  • 20 Roy B, Hazra S, Mondal B, Majumdar KC. Eur. J. Org. Chem. 2013; 4570
    • 21a Zou B, Yuan Q, Ma D. Angew. Chem. Int. Ed. 2007; 46: 2598
    • 21b Carril M, SanMartin R, Domínguez E. Chem. Soc. Rev. 2008; 37: 639
  • 22 Rauws TR. M, Maes BU. W. Chem. Soc. Rev. 2012; 41: 2463
    • 23a Anbazhagan M, Stephens CE, Boykin DW. Tetrahedron Lett. 2002; 43: 4221
    • 23b Fulp AB, Johnson MS, Markworth CJ, Marron BE, Seconi DC, Wang X, West CW, Zhou S. WO 2009012242, 2009
    • 23c Yin JJ, Zhao MM, Huffman MA, McNamara JM. Org. Lett. 2002; 4: 3481
    • 23d Zhang HQ, Xia ZR, Vasudevan A, Djuric SW. Tetrahedron Lett. 2006; 47: 4881
  • 24 General Procedure for the Preparation of Xanthine Derivatives To an oven-dried 25 mL round-bottom flask was added 5-bromouracil (1 mmol), acetamidine or benzamidine hydrochloride (1.4 mmol), CuBr2 (0.2 mmol), and Cs2CO3 (3 equiv) under nitrogen. Dry toluene (2 mL) was added with a syringe, and the mixture was degassed for 30 min. Then DMEDA (20 mol%) was added via a syringe under nitrogen. After the resulting reaction mixture was stirred for 36 h, the product was extracted with ethyl acetate and washed with water three times. The organic layer was dried over anhydrous Na2SO4 and filtered. Following concentration under reduced pressure, the residue was purified by silica gel chromatography to elute the product. 1,3,8-Trimethyl-1H-purine-2,6(3H,9H)-dione (3a) Yield 82%; mp >225 °C. IR (neat): 1644, 1709, 2965, 3049, 3105, 3158 cm–1. 1H NMR (CDCl3, 400 MHz): δ = 2.59 (s, 3 H, CCH3), 3.47 (s, 3 H, NCH3), 3.62 (s, 3 H, NCH3), 12.16 (s, 1 H, NH). 13C NMR (CDCl3, 100 MHz): δ = 14.7, 28.3, 30.2, 106.6, 149.6, 151.5, 152.0, 155.8. HRMS (TOF, MS, ES+): m/z calcd for C8H10N4O2H [M+ + H]: 195.0882; found: 195.0874.
  • 25 Li S.-J, Lan Y. Chem. Commun. 2020; 56: 6609
    • 26a Zhang C, Jiao N. J. Am. Chem Soc. 2010; 132: 28
    • 26b Arterburn JB, Pannala M, Gonzalez AM. Tetrahedron Lett. 2001; 8: 1475