CC BY-NC-ND 4.0 · SynOpen 2021; 05(03): 229-231
DOI: 10.1055/a-1577-4661
spotlight

Synthesis of Nitroolefins via the Direct Nitration of Alkenes

a   Department of Chemistry, TU Kaiserslautern, Erwin-Schrödinger-Str. Geb. 54, 67663 Kaiserslautern, Germany
b   Department of Chemistry, Faculty of Science, Aswan University, Aswan 81528, Egypt
,
Cedric Ndefo Nde
a   Department of Chemistry, TU Kaiserslautern, Erwin-Schrödinger-Str. Geb. 54, 67663 Kaiserslautern, Germany
,
a   Department of Chemistry, TU Kaiserslautern, Erwin-Schrödinger-Str. Geb. 54, 67663 Kaiserslautern, Germany
› Author Affiliations
We thank the research unit NanoKat at the TU Kaiserslautern, the DAAD (PhD scholarship to C.N.), and the Egyptian government (PhD exchange scholarship for M.H.) for financial support.


Publication History

Received: 07 July 2021

Accepted after revision: 29 July 2021

Accepted Manuscript online:
03 August 2021

Article published online:
13 August 2021

© 2021. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Barrett AG. M, Graboski GG. Chem. Rev. 1986; 86: 751
  • 2 Ono N. The Nitro Group in Organic Synthesis . Wiley-VCH; New York: 2001
  • 3 Piesche M, Roos J, Kühn B, Fettel J, Hellmuth N, Brat C, Maucher IV, Awad O, Matrone C, Comerma SteffensenS. G, Manolikakes G, Heinicke U, Zacharowski KD, Steinhilber D, Maier T. J. Front. Pharmacol. 2020; 11: 1297
  • 4 Yan G, Borah AJ, Wang L. Org. Biomol. Chem. 2014; 12: 6094

    • For two recent examples, see:
    • 5a Hassan M, Krieg S.-C, Ndefo Nde C, Roos J, Maier TJ, El Rady EA, Raslan MA, Sadek KU, Manolikakes G. Eur. J. Org. Chem. 2021; 2239
    • 5b Ishitani H, Saito Y, Tsubogo T, Kobayashi S. Org. Lett. 2016; 18: 1346
  • 6 Freeman BA, Baker PR. S, Schopfer FJ, Woodcock SR, Napolitano A, d’Ischia M. J. Chem. Biol. 2008; 283: 15515
  • 7 Tinsley SW. J. Org. Chem. 1961; 26: 4723
    • 8a Maity S, Manna S, Rana S, Naveen T, Mallick A, Maiti D. J. Am. Chem. Soc. 2013; 135: 3355
    • 8b Naveen T, Maity S, Sharma U, Maiti D. J. Org. Chem. 2013; 78: 59545
  • 9 Begari E, Singh C, Nookaraju U, Kumar P. Synlett 2014; 25: 1997
    • 10a Maity S, Naveen T, Sharma U, Maiti D. Org. Lett. 2013; 15: 3384
    • 10b Zhao A, Jiang Q, Jia J, Xu B, Liu Y, Zhang M, Liu Q, Luo W, Guo C. Tetrahedron Lett. 2016; 57: 80
    • 11a Hlekhlai S, Samakkanad N, Sawangphon T, Pohmakotr M, Reutrakul V, Soorukram D, Jaipetch T, Kuhakarn C. Eur. J. Org. Chem. 2014; 7433
    • 11b Ambala S, Singh R, Singh M, Cham PS, Gupta R, Munagala G, Yempalla KR, Vishwakarma RA, Singh PP. RSC Adv. 2019; 9: 30428
  • 12 Mir BA, Singh SJ, Kumar R, Patel BK. Adv. Synth. Catal. 2018; 360: 3801
  • 13 Reddy GS, Corey EJ. Org. Lett. 2021; 23: 3399
  • 14 Casiello M, Caputo D, Fusco C, Cotugno P, Rizzi V, Dell’Anna MM, D’Accolti L, Nacci A. Eur. J. Org. Chem. 2020; 6012
  • 15 Zhang K, Jelier B, Passera A, Jeschke G, Katayev D. Chem. Eur. J. 2019; 25: 12929