CC BY-NC-ND 4.0 · SynOpen 2021; 05(03): 232-251
DOI: 10.1055/a-1577-9755
review

The Renaissance of Alkali Metabisulfites as SO2 Surrogates

Ashish Kumar Sahoo
,
Anjali Dahiya
,
Amitava Rakshit
,
B.K.P. acknowledges the support of this research by the Department of Science and Technology, Science and Engineering Research Board, India (DST/SERB; EMR/2016/007042) and the Council of Scientific and Industrial Research, India (CSIR; 02(0365)/19/EMR-II). A.K.S., A.D., and A.R. thank IIT Guwahati for Fellowships and for providing necessary facilities.


Abstract

The upsurge of interest in the development of methodologies for the construction of sulfur-containing compounds via the use of expedient reagents has established sustainable tools in organic chemistry. This review focuses on sulfonylation reactions using inorganic sulfites (Na2S2O5 or K2S2O5) as the sulfur dioxide surrogates. Compared to the bis-adduct with DABCO, which is an excellent surrogate of gaseous SO2, the use of sodium or potassium metabisulfites as SO2 surrogates are equally efficient. The objective of the current review is to exemplify recent sulfonylation reactions using inorganic sulfites. For better understanding, the review is categorized according to the mode of reactions: transition-metal-catalyzed SO2 insertion, metal-free SO2 insertion, and visible-light-mediated SO2 insertion. All the reactions in each of the sections are illustrated with selected examples with a pertinent explanation of the proposed mechanism.

1 Introduction

2 Outlines of the Reactions Involving SO2 Insertion

2.1 Transition-Metal-Catalyzed SO2 Insertion

2.2 Transition-Metal-Free SO2 Insertion

2.3 Visible-Light-Mediated SO2 Insertion

3 Conclusion and Outlook



Publication History

Received: 08 July 2021

Accepted after revision: 03 August 2021

Publication Date:
03 August 2021 (online)

© 2021. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Bartholow M. Pharmacy Times 2011; 48
  • 2 Drews J. Science 2000; 287: 1960
  • 3 EI-Awa A, Noshi MN, du Jourdin XM, Fuchs PL. Chem. Rev. 2009; 109: 2315
  • 4 Ahmad I. Shagufta Int. J. Pharm. Pharm. Sci. 2015; 7: 19
  • 5 Trost BM, Kalnmals CA. Chem. Eur. J. 2019; 25: 11193
  • 6 Liu X, Cong T, Liu P, Sun P. Org. Biomol. Chem. 2016; 14: 9416
  • 7 Sun K, Chen X.-L, Li X, Qu L.-B, Bi W.-Z, Chen X, Ma H.-L, Zhang S.-T, Han B.-W, Zhao Y.-F, Li C.-J. Chem. Commun. 2015; 51: 12111
  • 8 Liang H, Jiang K, Ding W, Yuan Y, Shuai L, Chen Y, Wei Y. Chem. Commun. 2015; 51: 16928
  • 9 Zhao X, Dimitrijevic E, Dong VM. J. Am. Chem. Soc. 2009; 131: 3466
  • 10 Chen ZZ, Liu S, Hao W.-J, Xu G, Wu S, Miao J.-N, Jiang B, Wang S.-L, Tu S.-J, Li G. Chem. Sci. 2015; 6: 6654
  • 11 Yang Y, Bao Y, Guan Q, Sun Q, Zha Z, Wang Z. Green Chem. 2017; 19: 112
  • 12 Khakyzadeh V, Wang Y, Breit B. Chem. Commun. 2017; 53: 4966
  • 13 Wang Y, Ma L, Ma M, Zheng H, Shao Y, Wan X. Org. Lett. 2016; 18: 5082
  • 14 Tang X, Huang L, Xu Y, Yang J, Wu W, Jiang H. Angew. Chem. Int. Ed. 2014; 53: 4205
  • 15 Xu Y, Zhao J, Tang X, Wu W, Jiang H. Adv. Synth. Catal. 2014; 356: 2029
  • 16 Wu W, Yi S, Yu Y, Huang W, Jiang H. J. Org. Chem. 2017; 82: 1224
  • 17 Nguyen B, Emmet EJ, Willis MC. J. Am. Chem. Soc. 2010; 132: 16372
  • 18 Santos PS, Mello MT. S. J. Mol. Struct. 1988; 178: 121
  • 19 Qiu G, Zhou K, Gao L, Wu J. Org. Chem. Front. 2018; 5: 691
  • 20 Ye S, Yang M, Wu J. Chem. Commun. 2020; 56: 4145
  • 21 Liu J, Zheng L. Adv. Synth. Catal. 2019; 361: 1710
  • 22 Ye S, Qiu G, Wu J. Chem. Commun. 2019; 55: 1013
  • 23 Ye S, Li X, Xie W, Wu J. Eur. J. Org. Chem. 2020; 1274
  • 24 Feng M, Tang B, Liang SH, Jiang X. Curr. Top. Med. Chem. 2016; 16: 1200
  • 25 Wang X, Yang M, Kuang Y, Liu J.-B, Fan X, Wu J. Chem. Commun. 2020; 56: 3437
  • 26 Ye S, Wu J. Chem. Commun. 2012; 48: 10037
  • 27 Marset X, Torregrosa-Crespo J, Martinez-Espinosa R, Guillena G, Ramon DJ. Green Chem. 2019; 21: 4127
  • 28 Konishi H, Tanaka H, Manabe K. Org. Lett. 2017; 19: 1578
  • 29 Meng Y, Wang M, Jiang X. Angew. Chem. Int. Ed. 2020; 59: 1346
  • 30 Giannetti AM, Wong H, Dijkgraaf GJ. P, Dueber EC, Ortwine DF, Bravo BJ, Gould SE, Plise EG, Lum BL, Malhi V, Graham RA. J. Med. Chem. 2011; 54: 2592
  • 31 He Y, Yang J, Liu Q, Zhang X, Fan X. J. Org. Chem. 2020; 85: 15600
  • 32 Wang M, Zhao J, Jiang X. ChemSusChem 2019; 12: 3064
  • 33 Zhu H, Shen Y, Wen D, Le Z.-G, Tu T. Org. Lett. 2019; 21: 974
  • 34 Wang M, Chen S, Jiang X. Org. Lett. 2017; 19: 4916
    • 35a Muddala R, Acosta JA. M, Barbosa LC. A, Boukouvalas J. J. Nat. Prod. 2017; 80: 2166
    • 35b Ehrich EW, Dallob A, Lepeleire ID, Hecken AV, Riendeau D, Yuan W, Porras A, Wittreich J, Seibold JR, Schepper PD, Mehlisch DR, Gertz B. Clin. Pharmacol. Ther. 1999; 65: 336
  • 36 Evidente A, Sparapano L. J. Nat. Prod. 1994; 57: 1720
  • 37 Zhou K, Zhang J, Qiu G, Wu J. Org. Lett. 2019; 21: 275
  • 38 Fleming FF. Nat. Prod. Rep. 1999; 16: 597
  • 39 López R, Palomo C. Angew. Chem. Int. Ed. 2015; 54: 13170
  • 40 Dalpozzo R, Bartoli G, Bencivenni G. Chem. Soc. Rev. 2012; 41: 7247
  • 41 Chen Z, Zhou Q, Wang Q.-L, Chen P, Xiong B, Liang Y, Tang K.-W, Liu Y. Adv. Synth. Catal. 2020; 362: 3004
  • 42 Zheng X, Zhong T, Yi X, Shen Q, Yin C, Zhang L, Zhou J, Chen J, Yu C. Adv. Synth. Catal. 2021; 363: 3359
  • 43 Gong X, Ding Y, Fan X, Wu J. Adv. Synth. Catal. 2017; 359: 2999
  • 44 Yao Y, Yin Z, Chen W, Xie W, He F.-S, Wu J. Adv. Synth. Catal. 2021; 363: 570
  • 45 Palmer JT, Rasnick D, Klaus JL, Brömme D. J. Med. Chem. 1995; 38: 3193
  • 46 He F.-S, Yao Y, Xie W, Wu J. Adv. Synth. Catal. 2020; 362: 4744
  • 47 Huang J, Ding F, Chen Z, Yang G, Wu J. Org. Chem. Front. 2021; 8: 1461
  • 48 The Chemistry of Functional Groups, Supplement S: The Chemistry­ of Sulphur-Containing Functional Groups . Patai S, Rappoport Z. Wiley; Chichester: 1993. doi.org/10.1002/recl.1995114080
  • 49 Dang HT, Nguyen VT, Nguyen VD, Arman HT, Larionov OV. Org. Biomol. Chem. 2018; 16: 3605
  • 50 Mukherjee P, Woroch CP, Cleary L, Rusznak M, Franzese RW, Reese MR, Tucker JW, Humphrey JM, Etuk SM, Kwan SC, am Ende CW, Ball ND. Org. Lett. 2018; 20: 3943
  • 51 Zhong T, Pang M.-K, Chen Z.-D, Zhang B, Weng J, Lu G. Org. Lett. 2020; 22: 3072
  • 52 Lan X.-W, Wang N.-X, Xing Y. Eur. J. Org. Chem. 2017; 5821
  • 53 Kumar M, Ahmed R, Singh M, Sharma S, Thatikonda T, Singh PP. J. Org. Chem. 2020; 85: 716
  • 54 Zhang J, An Y, Wu J. Chem. Eur. J. 2017; 23: 9477
  • 55 Chen K, Chen W, Han B, Chen W, Liu M, Wu H. Org. Lett. 2020; 22: 1841
  • 56 Baraldi PG, NuÇez MC, Morelli A, Falzoni S, Virgilio FD, Romagnoli R. J. Med. Chem. 2003; 46: 1318
  • 57 You G, Xi D, Sun J, Hao L, Xia C. Org. Biomol. Chem. 2019; 17: 9479
  • 58 Saavedra B, Marset X, Guillena G, Ramón DJ. Eur. J. Org. Chem. 2020; 3462
  • 59 Wang M, Fan Q, Jiang X. Green Chem. 2018; 20: 5469
  • 60 Wang Y, Du B, Sha W, Mei H, Han J, Pan Y. Org. Chem. Front. 2017; 4: 1313
  • 61 Li Y, Wang M, Jiang X. Chin. J. Chem. 2020; 38: 1521
  • 62 Huang C.-M, Li J, Wang S.-Y, Ji S.-J. Chem. Lett. 2020; 31: 1923
  • 63 Yoon TP, Ischay MA, Du J. Nat. Chem. 2010; 2: 527
  • 64 Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
  • 65 Speckmeier E, Fuchs PJ. W, Zeitler K. Chem. Sci. 2018; 9: 7096
  • 66 Li H, Cheng Z, Tung C.-H, Xu Z. ACS Catal. 2018; 8: 8237
  • 67 Yadav A, König K, Sharma AK, Singh KN. Org. Chem. Front. 2019; 6: 989
  • 68 Gu L, Jin C, Wang W, He Y, Yang G, Li G. Chem. Commun. 2017; 53: 4203
  • 69 Gong X, Yang M, Liu J.-B, He F.-S, Wu J. Org. Chem. Front. 2020; 7: 938
  • 70 Weidne JP, Block SS. J. Med. Chem. 1964; 7: 671
  • 71 Lv Y, Luo J, Ma Y, Dong Q, He L. Org. Chem. Front. 2021; 8: 2461
  • 72 Gong X, Li X, Xie W, Wu J, Ye S. Org. Chem. Front. 2019; 6: 1863
  • 73 He F.-S, Yao Y, Xie W, Wu J. Chem. Commun. 2020; 56: 9469
  • 74 Liu N.-W, Liang S, Manolikakes G. Adv. Synth. Catal. 2017; 1308
  • 75 Gong X, Wang M, Ye S, Wu J. Org. Lett. 2019; 21: 1156
  • 76 Zhang J, Zhou K, Qiu G, Wu J. Org. Chem. Front. 2019; 6: 36
  • 77 Gong X, Chen J, Lai L, Cheng J, Sun J, Wu J. Chem. Commun. 2018; 54: 11172
  • 78 Zhang J, Li X, Xie W, Ye S, Wu J. Org. Lett. 2019; 21: 4950
  • 79 Liu Y, Wang Q.-L, Chen Z, Li H, Xiong B.-Q, Zhang P.-L, Tang K.-W. Chem. Commun. 2020; 56: 3011
  • 80 He F.-S, Ye S, Wu J. ACS Catal. 2019; 9: 8943
  • 81 Wang X, Kuang Y, Ye S, Wu J. Chem. Commun. 2019; 55: 14962
  • 82 Huang W, Cheng X. Synlett 2017; 28: 148
  • 83 Gong X, Yang M, Liu J.-B, He F.-S, Fan X, Wu J. Green Chem. 2020; 22: 1906
  • 84 Liu Y, Wang Q.-L, Chen Z, Chen P, Tang K.-W, Zhou Q, Xie J. Org. Biomol. Chem. 2019; 17: 10020