CC BY-NC-ND 4.0 · SynOpen 2021; 05(03): 255-277
DOI: 10.1055/a-1589-9556
review

Synthesis and Reactivity of Electron-Deficient 3-Vinylchromones

The Russian Science Foundation (project No. 18-13-00186) is acknowledged for funding.


Dedicated to Dr. V. Yu. Korotaev on the occasion of his 50th birthday

Abstract

The reported methods and data for the synthesis and reactivity of electron-deficient 3-vinylchromones containing electron-withdrawing­ groups at the exo-cyclic double bond are summarized and systematized for the first time. The main methods for obtaining these compounds are Knoevenagel condensation, Wittig reaction, and palladium-catalyzed cross-couplings. The most important chemical properties are transformations under the action of mono- and dinucleophiles, ambiphilic cyclizations, and cycloaddition reactions. The cross-conjugated and polyelectrophilic dienone system in 3-vinylchromones provides their high reactivity and makes these compounds valuable building blocks for the preparation of more complex heterocyclic systems. Chemical transformations of 3-vinylchromones usually begin with an attack of the C-2 atom and are accompanied by the opening of the pyrone ring followed by recyclization, in which the carbonyl group of chromone, an exo-double bond or a substituent on it can take part. The mechanisms of the reactions are discussed, the conditions for their implementation are described, and the yields of the resulting products are given. This review focuses on an analysis and generalization of the knowledge that has accumulated on the chemistry of electron-deficient 3-vinylchromones, mostly over the past 15 years.

1 Introduction

2 Synthesis of 3-Vinylchromones

3 Reactions with Mononucleophiles

4 Reactions with Dinucleophiles

5 Ambiphilic Cyclization

6 Cycloaddition Reactions

7 Other Reactions

8 Conclusion



Publication History

Received: 21 July 2021

Accepted after revision: 16 August 2021

Publication Date:
17 August 2021 (online)

© 2021. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Keri RS, Budagumpi S, Pai RK, Balakrishna RG. Eur. J. Med. Chem. 2014; 78: 340
    • 1b Gaspar A, Matos MJ, Garrido J, Uriarte E, Borges F. Chem. Rev. 2014; 114: 4960
    • 1c Horton DA, Bourne GT, Smythe ML. Chem. Rev. 2003; 103: 893
    • 1d Abu-Hashem AA, El-Shazly M. Eur. J. Med. Chem. 2015; 90: 633
    • 1e Verma AK, Pratap R. Tetrahedron 2012; 68: 8523
    • 1f Sharma SK, Kumar S, Chand K, Kathuria A, Gupta A, Jain R. Curr. Med. Chem. 2011; 18: 3825
    • 1g Reis J, Gaspar A, Milhazes N, Borges F. J. Med. Chem. 2017; 60: 7941
    • 2a Ghosh CK, Chakraborty A. ARKIVOC 2015; (vi): 288
    • 2b Sepay N, Dey SP. J. Heterocycl. Chem. 2014; 51: E1
    • 2c Plaskon AS, Grygorenko OO, Ryabukhin SV. Tetrahedron 2012; 68: 2743
    • 2d Shatokhin SS, Tuskaev VA, Gagieva SC, Oganesyan ÉT. Russ. Chem. Bull., Int. Ed. 2021; 70: 1011
  • 3 Sosnovskikh VY. Chem. Heterocycl. Compd. 2020; 56: 243
    • 4a Sosnovskikh VY. In Fluorine in Heterocyclic Chemistry . Vol. 2. Nenajdenko VG. Springer; Switzerland: 2014: 211
    • 4b Tomé SM, Silva AM. S, Santos CM. M. Curr. Org. Synth. 2014; 11: 317
    • 4c Isakova VG, Khlebnikova TS, Lakhvich FA. Russ. Chem. Rev. 2010; 79: 849
    • 5a Ghosh CK, Chakraborty A. ARKIVOC 2015; (vi): 417
    • 5b Sosnovskikh VY, Moshkin VS. Chem. Heterocycl. Compd. 2012; 48: 139
    • 5c Ghosh CK, Karak SK. J. Heterocycl. Chem. 2005; 42: 1035
  • 6 Sosnovskikh VY. Russ. Chem. Rev. 2003; 72: 489
  • 7 Kornev MY, Sosnovskikh VY. Chem. Heterocycl. Compd. 2016; 52: 71
    • 8a Sosnovskikh VY. Chem. Heterocycl. Compd. 2020; 56: 1111
    • 8b Ibrahim MA, El-Gohary NM, Said S. Heterocycles 2015; 91: 1863
  • 9 Sosnovskikh VY. Russ. Chem. Rev. 2021; 90: 511
  • 10 Silva AM. S, Pinto DC. G. A, Cavaleiro JA. S, Levai A, Patonay T. ARKIVOC 2004; (vii): 106
  • 11 Gašparová R, Lácová M. Molecules 2005; 10: 937
  • 12 Ibrahim MA, Ali TE, El-Gohary NM, El-Kazak AM. Eur. J. Chem. 2013; 4: 311
    • 13a Nohara A, Kuriki H, Saijo T, Ukawa K, Murata T, Kanno M, Sanno Y. J. Med. Chem. 1975; 18: 34
    • 13b Nohara A, Kuriki H, Saijo T, Sugihara H, Kanno M, Sanno Y. J. Med. Chem. 1977; 20: 141
    • 14a Chand K, Tiwari RK, Kumar S, Shirazi AN, Sharma S, Van der Eycken E, Parmar VS, Parang K, Sharma SK. J. Heterocycl. Chem. 2015; 52: 562
    • 14b Kumar S, Singh BK, Pandey AK, Kumar A, Sharma SK, Raj HG, Prasad AK, Van der Eycken E, Parmar VS, Ghosh B. Bioorg. Med. Chem. 2007; 15: 2952
  • 15 Joshi RS, Mandhane PG, Badadhe PV, Gill CH. Ultrason. Sonochem. 2011; 18: 735
  • 16 Iwasaki H, Kume T, Yamamoto Y, Akiba K. Heterocycles 1988; 27: 1599
  • 17 Tuskaev VA, Oganesyan ÉT, Mutsueva SK. Pharm. Chem. J. 2002; 36: 309
    • 18a Chen C, Wilcoxen K, Zhu Y.-F, Kim K, McCarthy JR. J. Org. Chem. 1999; 64: 3476
    • 18b McCarthy JR, Matthews DP, Edwards ML, Stemerick DM, Jarvi ET. Tetrahedron Lett. 1990; 31: 5449
    • 18c McCarthy JR, Huber EW, Le T.-B, Laskovics FM, Matthews DP. Tetrahedron 1996; 52: 45
    • 19a Jones WD, Albrecht WL. J. Org. Chem. 1976; 41: 706
    • 19b Borrell JI, Teixidó J, Schuler E, Michelotti EL. Mol. Diversity 2000; 5: 163
  • 20 Hangarge RV, Sonwane SA, Jarikote DV, Shingare MS. Green Chem. 2001; 3: 310
  • 21 Kumar V, Chatterjee A, Banerjee M. Synth. Commun. 2015; 45: 2364
  • 22 Ghosh CK, Tewari N, Bhattacharyya A. Synthesis 1984; 614
  • 23 Coutts SJ, Wallace TW. Tetrahedron 1994; 50: 11755
  • 24 Ali TE, Assiri MA, Ibrahim MA, Yahia IS. Russ. J. Org. Chem. 2020; 56: 845
    • 25a Soengas RG, Silva VL. M, Ide D, Kato A, Cardoso SM, Paz FA. A, Silva AM. S. Tetrahedron 2016; 72: 3198
    • 25b Rodríguez JM, Pujol MD. Tetrahedron Lett. 2011; 52: 2629
    • 25c Bandyopadhyay C, Sur KR, Patra R, Banerjee S. J. Chem. Res., Miniprint 2003; 847
  • 26 Abdou WM, Khidre MD, Mahran MR. Phosphorus, Sulfur Silicon Relat. Elem. 1991; 61: 83
    • 27a Sun W, Carroll PJ, Soprano DR, Canney DJ. Bioorg. Med. Chem. Lett. 2009; 19: 4339
    • 27b Singh G, Singh G, Ishar MP. S. Helv. Chim. Acta 2003; 86: 169
  • 28 Davies SG, Mobbs BE, Goodwin CJ. J. Chem. Soc., Perkin Trans. 1 1987; 2597
  • 29 Patonay T, Vasas A, Kiss-Szikszai A, Silva AM. S, Cavaleiro JA. S. Aust. J. Chem. 2010; 63: 1582
    • 30a Zhang Y, Lv Z, Zhong H, Zhang M, Zhang T, Zhang W, Li K. Tetrahedron 2012; 68: 9777
    • 30b Zhang Y, Zhong H, Lv Z, Zhang M, Zhang T, Li Q, Li K. Eur. J. Med. Chem. 2013; 62: 158
    • 30c Lv Z, Sheng C, Wang T, Zhang Y, Liu J, Feng J, Sun H, Zhong H, Niu C, Li K. J. Med. Chem. 2010; 53: 660
  • 31 Kim D, Hong S. Org. Lett. 2011; 13: 4466
  • 32 Debbarma S, Sk MR, Modak B, Maji MS. J. Org. Chem. 2019; 84: 6207
    • 33a Gigant N, Bäckvall J.-E. Chem. Eur. J. 2013; 19: 10799
    • 33b Wang P, Verma P, Xia G, Shi J, Qiao JX, Tao S, Cheng PT. W, Poss MA, Farmer ME, Yeung K.-S, Yu J.-Q. Nature 2017; 551: 489
  • 34 Ghosh CK, Khan S. Synthesis 1981; 903
  • 35 Haas G, Stanton JL, von Sprecher A, Wenk P. J. Heterocycl. Chem. 1981; 18: 607
  • 36 Pintiala C, Lawson AM, Comesse S, Daïch A. Tetrahedron Lett. 2013; 54: 2853
    • 37a Chand K, Prasad S, Tiwari RK, Shirazi AN, Kumar S, Parang K, Sharma SK. Bioorg. Chem. 2014; 53: 75
    • 37b Chand K, Alsoghier HM, Chaves S, Santos MA. J. Inorg. Biochem. 2016; 163: 266
  • 38 Zhang Y, Lv Z, Zhang M, Li K. Tetrahedron 2013; 69: 8839
  • 39 Chand K, Sharma AK, Sharma SK. Magn. Reson. Chem. 2016; 54: 91
  • 40 Lepitre T, Denhez C, Moncol J, Othman M, Lawson AM, Daïch A. J. Org. Chem. 2017; 82: 12188
    • 41a Lepitre T, Denhez C, Sanselme M, Othman M, Lawson AM, Daïch A. J. Org. Chem. 2016; 81: 8837
    • 41b Monier M, El-Mekabaty A, Abdel-Latif D, Elattar KM. Synth. Commun. 2019; 49: 2591
  • 42 Lepitre T, Biannic RL, Othman M, Lawson AM, Daïch A. Org. Lett. 2017; 19: 1978
  • 43 Ibrahim MA, Badran A.-S. ARKIVOC 2018; (vii): 214
  • 44 Abozeid MA, El-Sawi AA, Elmorsy MR, Abdelmoteleb M, Abdel-Rahmana A.-RH, El-Desoky E.-SI. RSC Adv. 2019; 9: 27996
  • 45 Ibrahim MA, El-Gohary NM. Heterocycles 2014; 89: 413
    • 46a Mehrparvar S, Balalaie S, Rabbanizadeh M, Ghabraie E, Rominger F. Mol. Diversity 2014; 18: 535
    • 46b Shelke KF, Sapkal SB, Niralwad KS, Shingate BB, Shingare MS. Cent. Eur. J. Chem. 2010; 8: 12
  • 47 Balalaie S, Bijanzadeh HR, Mehrparvar S, Rominger F. Synlett 2016; 27: 782
    • 48a Torres M, Gil S, Parra M. Curr. Org. Chem. 2005; 9: 1757
    • 48b Amer MM. K, Aziz MA, Shehab WS, Abdellattif MH, Mouneir SM. J. Saudi Chem. Soc. 2021; 25: 101259
  • 49 Mehrparvar S, Balalaie S, Rabbanizadeh M, Rominger F, Ghabraie E. Org. Biomol. Chem. 2014; 12: 5757
    • 50a Lévai A, Silva AM. S, Pinto DC. G. A, Cavaleiro JA. S, Alkorta I, Elguero J, Jekö J. Eur. J. Org. Chem. 2004; 4672
    • 50b Santos CM. M, Silva VL. M, Silva AM. S. Molecules 2017; 22: 1665
  • 51 Hatzade K, Taile V, Gaidhane P, Ingle V. Turk. J. Chem. 2010; 34: 241
    • 52a Santos CM. M, Silva AM. S, Jekő J, Lévai A. ARKIVOC 2012; (v): 265
  • 53 Siddiqui ZN, Praveen S, Musthafa M, Ahmad A, Khan AU. J. Enzyme Inhib. Med. Chem. 2012; 27: 84
  • 54 Chernov NM, Shutov RV, Potapova AE, Yakovlev IP. Synthesis 2020; 52: 40
  • 55 Xiang H, Qi X, Xie Y, Xub G, Yang C. Org. Biomol. Chem. 2012; 10: 7730
    • 56a Ali TE.-S, Ibrahim MA. J. Braz. Chem. Soc. 2010; 21: 1007
    • 56b Abdel-Megid M, Ibrahim MA, Gabr Y, El-Gohary NM, Mohamed EA. J. Heterocycl. Chem. 2013; 50: 615
    • 57a Sanchez LM, Pasquale G, Sathicq Á, Ruiz D, Jios J, de Souza AL. F, Romanelli GP. Heteroat. Chem. 2016; 27: 295
    • 57b Sanchez LM, Sathicq ÁG, Jios JL, Baronetti GT, Thomas HJ, Romanelli GP. Tetrahedron Lett. 2011; 52: 4412
    • 58a Ghosh CK, Ray A, Patra A. J. Heterocycl. Chem. 2001; 38: 1459
    • 58b Ghosh CK, Karak SK, Patra A. J. Chem. Res., Synop. 2002; 311
  • 59 Ali TE, Assiri MA, Shati AA, Alfaifi MY, Elbehairi SE. I, El-Kott AF. Heterocycles 2021; 102: 930
  • 60 Badran A.-S, El-Gohary NM, Ibrahim MA, Hashiem SH. J. Heterocycl. Chem. 2020; 57: 2570
  • 61 Ibrahim MA, El-Gohary NM. Tetrahedron 2018; 74: 512
  • 62 Assiri MM, Ali TE, Ibrahim MA, Badran A.-S, Yahia IS. Polycyclic Aromat. Compd. 2019; 41: 1357
    • 63a Patil RB, Sawant SD, Reddy KV, Shirsat M. Res. J. Pharm. Biol. Chem. Sci. 2015; 6: 381
    • 63b Sharma VP, Kumar P. Asian J. Chem. 2014; 26: 3992
    • 63c Albanese DC. M, Gaggero N, Fei M. Green Chem. 2017; 19: 5703
    • 63d Shanker MS. S, Reddy RB, Chandra MouliG. V. P, Reddy YD. Phosphorus, Sulfur Silicon Relat. Elem. 1989; 44: 143
    • 63e Tarannum S, Siddiqui ZN. Monatsh. Chem. 2017; 148: 717
    • 63f Tarannum S, Siddiqui ZN. RSC Adv. 2015; 5: 74242
  • 64 See ref. 24
    • 65a Khodairy A. J. Chin. Chem. Soc. 2007; 54: 93
    • 65b Badran A.-S, Ibrahim MA, Ahmed A. Synth. Commun. 2021; 51: 1868
  • 66 See ref. 19a
  • 67 Chen H, Xie F, Gong J, Hu Y. J. Org. Chem. 2011; 76: 8495
  • 68 Cai H, Xia L, Lee YR. Chem. Commun. 2016; 52: 7661
  • 69 See ref. 61
  • 70 Gong J, Xie F, Chen H, Hu Y. Org. Lett. 2010; 12: 3848
  • 71 Gong J, Xie F, Ren W, Chen H, Hu Y. Org. Biomol. Chem. 2012; 10: 486
  • 72 Bodwell GJ, Hawco KM, da Silva RP. Synlett 2003; 179
  • 73 Dang A.-T, Miller DO, Dawe LN, Bodwell GJ. Org. Lett. 2008; 10: 233
  • 74 Chernov NM, Shutov RV, Sharoyko VV, Kuz'mich NN, Belyakov AV, Yakovlev IP. Eur. J. Org. Chem. 2017; 2836
  • 75 Eschenbrenner-Lux V, Küchler P, Ziegler S, Kumar K, Waldmann H. Angew. Chem. Int. Ed. 2014; 53: 2134
  • 76 Heredia-Moya J, Krohn K, Flörke U, Pessoa-Mahana H, Weiss-López B, Estévez-Braun A, Araya-Maturana R. Heterocycles 2007; 71: 1327
  • 77 Huang X.-J, Tao Y, Li Y.-K, Wu X.-Y, Sha F. Tetrahedron 2016; 72: 8565
  • 78 Lévai A, Jekő J. J. Heterocycl. Chem. 2002; 39: 1333
  • 79 Ghosh CK, Biswas S. J. Chem. Soc., Chem. Commun. 1989; 1784
  • 80 Deng X, Mani NS. Org. Lett. 2006; 8: 3505
  • 81 Teimouri MB, Akbari-Moghaddam P, Golbaghi G. ACS Comb. Sci. 2011; 13: 659
  • 82 Giardinetti M, Jessen NI, Christensen ML, Jørgensen KA. Chem. Commun. 2019; 55: 202
  • 83 Waldmann H, Kühn M, Liu W, Kumar K. Chem. Commun. 2008; 1211
  • 84 Sun J, Xu J, Nie G, Jin Z, Chi YR. Org. Lett. 2020; 22: 2595
    • 85a Mo J, Chen X, Chi YR. J. Am. Chem. Soc. 2012; 134: 8810
    • 85b Shen L.-T, Shao P.-L, Ye S. Adv. Synth. Catal. 2011; 353: 1943
  • 86 Mitra RN, Show K, Barman D, Sarkar S, Maiti DK. J. Org. Chem. 2019; 84: 42
  • 87 Saha S, Ghosh T, Bandyopadhyay C. Synth. Commun. 2008; 38: 2429