CC BY-NC-ND 4.0 · Laryngorhinootologie 2022; 101(S 01): S186-S193
DOI: 10.1055/a-1663-0803
Referat

Human-Robot Interaction: Networked, Adaptive Machines in Medicine

Article in several languages: deutsch | English
Hamid Sadeghian
1   Munich Institute of Robotics and Machine Intelligence (MIRMI), Technische Universität München
,
Abdeldjallil Naceri
1   Munich Institute of Robotics and Machine Intelligence (MIRMI), Technische Universität München
,
Sami Haddadin
1   Munich Institute of Robotics and Machine Intelligence (MIRMI), Technische Universität München
› Author Affiliations

Abstract

The application of robotic and intelligent technologies in healthcare is dramatically increasing. The next generation of lightweight and tactile robots have provided a great opportunity to be used for a wide range of applications from medical examination, diagnosis, therapeutic procedures to rehabilitation and assistive robotics. They can potentially outperform current medical procedures by exploiting the com- plementary strengths of humans and computer-based technologies. In this study, the importance of human- robot interaction is discussed and technological re- quirements and challenges in making human-centered robot platforms for medical applications is addressed.



Publication History

Article published online:
23 May 2022

© 2022. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Robotics E. Strategic research agenda for robotics in europe 2014–2020 IEEE Robot. Au- tom. Mag 2014; 24: 171
  • 2 Walker A, Gemeinschaften GBE. Age and attitudes: main results from a Eurobarometer survey. Commission of the European Communities. 1993
  • 3 Siciliano B, Khatib O, Kröger T. Springer handbook of robotics. Springer; 2008. 200.
  • 4 Ostermann M, Vincent J-L. How much centralization of critical care services in the era of telemedicine? critical care. 23. 2019
  • 5 Jang SM, Lee K, Hong Y-J, Kim J, Kim S. Economic evaluation of robot- based telemedicine consultation services. Telemedicine and e-Health 2020; 26: 1134-1140
  • 6 Chang D, Xu H, Rebaza A, Sharma L, Cruz CSD. Protecting health-care workers from subclinical coronavirus infection. The Lancet Respiratory Medicine 2020; 8: e13
  • 7 Fuchtmann J, Krumpholz R, Berlet M, Ostler D, Feussner H, Haddadin S, Wilhelm D. Covid-19 and beyond: development of a comprehensive telemedical diagnostic framework. International Journal of Computer Assisted Radiology and Surgery 2021; 1-10
  • 8 Akbari M, Carriere J, Meyer T, Sloboda R, Husain S, Usmani N, Tavakoli M. Robotic ultrasound scanning with real-time imagebased force adjustment: Quick response for enabling physical distancing during the covid-19 pan-demic. Frontiers in Robotics and AI 2021; 8: 62
  • 9 Becker CD, Dandy K, Gaujean M, Fusaro M, Scurlock C. Legal perspectives on telemedicine part 2: telemedicine in the intensive care unit and medicolegal risk The Permanente Journal. 23. 2019
  • 10 Tröbinger M, Jähne C, Qu Z, Elsner J, Reindl A, Getz S, Goll T, Loinger B, Loibl T, Kugler C, Calafell C, Sabaghian M, Ende T, Wahrmann D, Parusel S, Haddadin S, Haddadin S. Introducing GARMI – A service robotics platform to support the elderly at home: Design philosophy, system overview and first results. IEEE Robotics and Automation Letters 2021; 6: 5857-5864
  • 11 Taylor R, Joskowicz L. Computer-integrated surgery and medical robotics in: Standard handbook of biomedical engineering & design. McGraw-Hill Education; 2003
  • 12 Haddadin S, Albu-Schäffer A, Strohmayr M, Frommberger M, Hirzinger G. Injury evaluation of human-robot impacts in 2008 IEEE International Conference on Robotics and Automation. IEEE; 2008: 2203-2204
  • 13 Haddadin S, Albu-Schäffer A, Hirzinger G. Requirements for safe robots: Measurements, analysis and new insights. The International Journal of Robotics Research 28: 1507-1527 2009;
  • 14 Franka Emika https://www.franka.de/
  • 15 Haddadin S, De Luca A, Albu-Schäffer A. Robot collisions: A survey on detection, isolation, and identification. IEEE Transactions on Robotics 33: 1292-1312 2017;
  • 16 Grebenstein M, Albu-Schäffer A, Bahls T, Chalon M, Eiberger O, Friedl W, Gruber R, Haddadin S, Hagn U, Haslinger R. et al The DLR hand arm system in 2011 IEEE International Conference on Robotics and Automation. IEEE; 2011: 3175-3182
  • 17 Sadeghian H, Villani L, Keshmiri M, Si- ciliano B. Task-space control of robot manipulators with null-space compliance. IEEE Trans-actions on Robotics 30: 493-506 2013;
  • 18 Peternel L, Kim W, Babič J, Ajoudani A. Towards ergonomic control of human-robot co-manipulation and handover in 2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids). IEEE; 2017: 55-60
  • 19 Kim W, Lorenzini M, Balatti P, Nguyen PD, Pattacini U, Tikhanoff V, Peternel L, Fan- tacci C, Natale L, Metta G. et al. Adaptable workstations for human-robot collaboration: A reconfigurable framework for improving worker ergonomics and productivity. IEEE Robotics & Automation Magazine 2019; 26: 14-26
  • 20 Li Y, Ge SS. Human-robot collaboration based on motion intention estimation. IEEE/ASME Transactions on Mechatronics 2013; 19: 1007-1014
  • 21 Li Y, Tee KP, Chan WL, Yan R, Chua Y, Limbu DK. Continuous role adaptation for human–robot shared control. IEEE Transactions on Robotics 2015; 31: 672-681
  • 22 Riener R, Duschau-Wicke A, König A, Bolliger M, Wieser M, Vallery H. Automation in rehabilitation: How to include the human into the loop in World Congress on Medical Physics and Biomedical Engineering, September 7-12, 2009. Munich, Germany: Springer; 2009: 180-183
  • 23 Quere G, Hagengruber A, Iskandar M, Bus- tamante S, Leidner D, Stulp F, Vogel J. Shared control templates for assistive robotics in 2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE; 2020: 1956-1962
  • 24 Aguirre-Ollinger G, Colgate JE, Peshkin MA, Goswami A. Active-impedance control of a lower-limb assistive exoskeleton in 2007 IEEE 10th international conference on re- habilitation robotics. IEEE; 2007: 188-195
  • 25 Hirche S, Buss M. Human-oriented control for haptic teleoperation. Proceedings of the IEEE 2012; 100: 623-647
  • 26 Tonin L, Leeb R, Tavella M, Perdikis S, Millán J.d.R. The role of shared-control in bci- based telepresence in 2010 IEEE International Conference on Systems, Man and Cybernetics. IEEE; 2010: 1462-1466
  • 27 Tobergte A, Konietschke R, Hirzinger G. Planning and control of a teleoperation system for research in minimally invasive robotic surgery in 2009 IEEE International Conference on Robotics and Automation. IEEE; 2009: 4225-4232
  • 28 Sadeghian H, Barkhordari M, Kamranian Z, Jafarpisheh MS. Robotic needle positioning based on ct-scan images: Constrained admittance realization. Journal of Medical Robotics Research 2020; 5: 2150001
  • 29 Johannsmeier L, Gerchow M, Haddadin S. A framework for robot manipulation: Skill for-malism, meta learning and adaptive control in 2019 International Conference on Robotics and Automation (ICRA). IEEE; 2019: 5844-5850
  • 30 Tröbinger M, Costinescu A, Xing H, Elsner J, Hu T, Naceri A, Figueredo L, Jensen E, Burschka D, Haddadin S. A dual doctor-patient twin paradigm for transparent remote examination, diagnosis, and rehabilitation. IEEE/RSJ International Conference on Intelligent Robots and Systems 2021; 6: 5857-5864
  • 31 Gealy DV, McKinley S, Yi B, Wu P, Downey PR, Balke G, Zhao A, Guo M, Thomas- son R, Sinclair A., Cuellar P, McCarthy Z, Abbeel P. Quasi-direct drive for low-cost compliant robotic manipulation in 2019 International Conference on Robotics and Automation (ICRA). IEEE; 2019: 437-443
  • 32 Lawrence DA. Stability and transparency in bilateral teleoperation. IEEE transactions on robotics and automation 1993; 9: 624-637
  • 33 Alonso V, De La Puente P. System transparency in shared autonomy: A mini review. Frontiers in neurorobotics 2018; 12: 83
  • 34 Miller CA. The risks of discretization: what is lost in (even good) levels-of-automation schemes. Journal of Cognitive Engineering and Decision Making 2018; 12: 74-76