Angewandte Nuklearmedizin 2022; 45(03): 189-197
DOI: 10.1055/a-1715-5254
Technik
Übersicht

Instrumentierung in der präklinischen PET- und SPECT-Bildgebung

Preclinical PET and SPECT instrumentation
Alexandros Moraitis
1   Klinik für Nuklearmedizin, Universitätsklinikum Essen, Essen, Deutschland
,
Pedro Fragoso Costa
1   Klinik für Nuklearmedizin, Universitätsklinikum Essen, Essen, Deutschland
› Author Affiliations

Zusammenfassung

Translationale Forschung greift heute mehr denn je in die Praktiken moderner Medizin ein. Im Bereich der tierexperimentellen Forschung, die sich als Brücke zwischen biomedizinischer Grundlagenforschung und klinischer Forschung versteht, stellt die Kleintierbildgebung eines der wichtigsten Forschungsinstrumente dar. Unter den verwendeten bildgebenden Verfahren genießen die PET- und SPECT-Bildgebung das höchste Ansehen, da sie quantitative Informationen über metabolische Prozesse liefern, dynamische Aufnahmen erlauben und geeignet für Längsschnittstudien sind. Hierdurch entstehen vielfältige Perspektiven bei der Entwicklung von Tiermodellen für die Erforschung von Erkrankungen des Menschen; sei es zur Überwachung von Krankheitsverläufen, der Validierung theranostischer Ansätze oder der Erprobung neuer Radiopharmaka. Das stetig steigende Interesse an nicht invasiver Kleintierbildgebung fördert insbesondere auch die Entwicklung dedizierter Bildgebungssysteme. Allen Systemen zur präklinischen Bildgebung ist das Ziel gemein, die Auflösung und Sensitivität auf die Dimensionen der Tiere anzupassen. Dieser Übersichtsartikel bietet Einsicht in die konzeptionellen Grundlagen und technischen Eigenschaften präklinischer PET- und SPECT-Systeme, mit Fokus auf die eingesetzten Detektormaterialien und -technologien, sowie die Detektorkonfiguration. Darüber hinaus werden wichtige Aspekte der Qualitätskontrolle genannt.

Abstract

Translational research is now more than ever gaining relevance in the practices of modern medicine. In the field of animal experimental research, which serves as a bridge between basic biomedical research and clinical research, small animal imaging represents one of the most important research tools. Among the imaging modalities, PET and SPECT are assumed to be the most attractive for providing quantitative information on metabolic processes, allowing for dynamic imaging and being suitable for longitudinal studies. This opens up a variety of perspectives in the development of animal models for human diseases; either for monitoring disease progression, validating theranostic approaches or testing of new radiopharmaceuticals. The ever-increasing interest in non-invasive small animal imaging is also driving the development of dedicated imaging systems. Common to all preclinical imaging systems is the goal of matching resolution and sensitivity to animal dimensions. This review article provides insight into the conceptual basis and technical characteristics of preclinical PET and SPECT systems, with a focus on the detector materials and technologies used, as well as the detector configuration. In addition, important aspects of quality control are mentioned.



Publication History

Article published online:
16 August 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Phelps ME. PET: the merging of biology and imaging into molecular imaging. Journal of Nuclear Medicine 2000; 41: 661-681
  • 2 Dillenseger JP, Choquet P, Snay ER. et al. Why the preclinical imaging field needs nuclear medicine technologists and radiographers?. Eur J Hybrid Imaging 2020; 4: 12
  • 3 Kiessling F, Pichler BJ. Small animal imaging: basics and practical guide. Heidelberg: Springer Science & Business Media; 2010
  • 4 Kuntner C, Stout DB. Quantitative preclinical PET imaging: opportunities and challenges. Frontiers in physics 2014; 2: 12
  • 5 Amirrashedi M, Zaidi H, Ay MR. Advances in preclinical PET instrumentation. PET clinics 2020; 15: 403-426
  • 6 Zhang H, Bao Q, Vu NT. et al. Performance evaluation of PETbox: a low cost bench top preclinical PET scanner. Molecular imaging and biology 2011; 13: 949-961
  • 7 Gu Z, Taschereau R, Vu N. et al. NEMA NU-4 performance evaluation of PETbox4, a high sensitivity dedicated PET preclinical tomograph. Physics in Medicine & Biology 2013; 58: 3791
  • 8 Gu Z, Taschereau R, Vu NT. et al. Performance evaluation of G8, a high-sensitivity benchtop preclinical PET/CT tomograph. Journal of Nuclear Medicine 2019; 60: 142-149
  • 9 Surti S, Karp JS, Perkins AE. et al. Imaging performance of A-PET: a small animal PET camera. IEEE transactions on medical imaging 2005; 24: 844-852
  • 10 Huisman MC, Reder S, Weber AW. et al. Performance evaluation of the Philips MOSAIC small animal PET scanner. European journal of nuclear medicine and molecular imaging 2007; 34: 532-540
  • 11 Levin CS, Zaidi H. Current trends in preclinical PET system design. PET clinics 2007; 2: 125-160
  • 12 Yoshida E, Tashima H, Nishikido F. et al. Reduction method for intrinsic random coincidence events from 176 lu in low activity PET imaging. Radiological physics and technology 2014; 7: 235-245
  • 13 Miyaoka RS, Lehnert AL. Small animal PET: a review of what we have done and where we are going. Physics in Medicine & Biology 2020; 65: 24TR04
  • 14 Mohammadi A, Yoshida E, Nishikido F. et al. Development of a dual-ended readout detector with segmented crystal bars made using a subsurface laser engraving technique. Physics in Medicine & Biology 2018; 63: 025019
  • 15 Nitta M, Inadama N, Nishikido F. et al. Development of the X’tal cube PET detector with segments of (0.77 mm) 3. IEEE Transactions on Radiation and Plasma Medical Sciences 2018; 2: 564-573
  • 16 Lewellen TK. Recent developments in PET detector technology. Physics in Medicine & Biology 2008; 53: R287
  • 17 Berg E, Zhang X, Bec J. et al. Development and evaluation of mini-EXPLORER: a long axial field-of-view PET scanner for nonhuman primate imaging. Journal of Nuclear Medicine 2018; 59: 993-998
  • 18 Vaquero JJ, Kinahan P. Positron emission tomography: current challenges and opportunities for technological advances in clinical and preclinical imaging systems. Annual review of biomedical engineering 2015; 17: 385-414
  • 19 Meikle SR, Kench P, Kassiou M. et al. Small animal SPECT and its place in the matrix of molecular imaging technologies. Physics in Medicine & Biology 2005; 50: R45
  • 20 Franc BL, Acton PD, Mari C. et al. Small-animal SPECT and SPECT/CT: important tools for preclinical investigation. Journal of nuclear medicine 2008; 49: 1651-1663
  • 21 Beekman FJ, van der Have F, Vastenhouw B. et al. U-SPECT-I: a novel system for submillimeter-resolution tomography with radiolabeled molecules in mice. Journal of Nuclear Medicine 2005; 46: 1194-1200
  • 22 Van Der Have F, Vastenhouw B, Ramakers RM. et al. U-SPECT-II: an ultra-high-resolution device for molecular small-animal imaging. Journal of Nuclear Medicine 2009; 50: 599-605
  • 23 Dalm SU, Bakker IL, de Blois E. et al. 68Ga/177Lu-NeoBOMB1, a novel radiolabeled GRPR antagonist for theranostic use in oncology. Journal of Nuclear Medicine 2017; 58: 293-299
  • 24 Jaszczak R, Li J, Wang H. et al. Pinhole collimation for ultra-high-resolution, small-field-of-view SPECT. Physics in Medicine & Biology 1994; 39: 425
  • 25 Weber DA, Ivanovic M. Ultra-high-resolution imaging of small animals: implications for preclinical and research studies. Journal of Nuclear Cardiology 1999; 6: 332
  • 26 Kupinski MA, Barrett HH. Small-animal SPECT imaging. Springer 2005
  • 27 Furenlid LR, Wilson DW, Chen Y-c. et al. FastSPECT II: a second-generation high-resolution dynamic SPECT imager. IEEE transactions on nuclear science 2004; 51: 631-635
  • 28 Peterson TE, Shokouhi S. Advances in preclinical SPECT instrumentation. J Nucl Med 2012; 53: 841-844
  • 29 Van Audenhaege K, Van Holen R, Vandenberghe S. et al. Review of SPECT collimator selection, optimization, and fabrication for clinical and preclinical imaging. Medical physics 2015; 42: 4796-4813
  • 30 Osborne DR, Kuntner C, Berr S. et al. Guidance for efficient small animal imaging quality control. Molecular imaging and biology 2017; 19: 485-498
  • 31 Vanhove C, Bankstahl JP, Krämer SD. et al. Accurate molecular imaging of small animals taking into account animal models, handling, anaesthesia, quality control and imaging system performance. EJNMMI physics 2015; 2: 1-25
  • 32 Conti M, Eriksson L. Physics of pure and non-pure positron emitters for PET: a review and a discussion. EJNMMI physics 2016; 3: 1-17
  • 33 Schaart DR. Physics and technology of time-of-flight PET detectors. Physics in Medicine & Biology 2021;
  • 34 Jiang W, Chalich Y, Deen MJ. Sensors for positron emission tomography applications. Sensors 2019; 19: 5019
  • 35 Krishnamoorthy S, Blankemeyer E, Mollet P. et al. Performance evaluation of the MOLECUBES β-CUBE—a high spatial resolution and high sensitivity small animal PET scanner utilizing monolithic LYSO scintillation detectors. Physics in Medicine & Biology 2018; 63: 155013
  • 36 Teuho J, Han C, Riehakainen L. et al. NEMA NU 4-2008 and in vivo imaging performance of RAYCAN trans-PET/CT X5 small animal imaging system. Physics in Medicine & Biology 2019; 64: 115014
  • 37 González AJ, Aguilar A, Conde P. et al. Next generation of the Albira small animal PET based on high density SiPM arrays. In: 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). IEEE 2015;
  • 38 Belcari N, Camarlinghi N, Ferretti S. et al. NEMA NU-4 performance evaluation of the IRIS PET/CT preclinical scanner. IEEE Transactions on Radiation and Plasma Medical Sciences 2017; 1: 301-309
  • 39 Amirrashedi M, Sarkar S, Ghafarian P. et al. NEMA NU‐4 2008 performance evaluation of Xtrim‐PET: A prototype SiPM‐based preclinical scanner. Medical Physics 2019; 46: 4816-4825
  • 40 Yagi Y, Kawashima H, Arimitsu K. et al. Single-Photon Emission Computed Tomographic Imaging in Live Animals. In: Handbook of In Vivo Chemistry in Mice: From Lab to Living System 2020: 151-183 https://doi.org/10.1002/9783527344406.ch6
  • 41 Sánchez F, Orero A, Soriano A. et al. ALBIRA: a small animal PET/SPECT/CT imaging system. Medical physics 2013; 40: 051906