Deutsche Zeitschrift für Onkologie 2022; 54(02): 68-71
DOI: 10.1055/a-1822-7690

Die Rolle des Mikrobioms in der gastrointestinalen Karzinogenese

The Role of the Microbiome in Gastrointestinal Carcinogenesis
Riccardo Vasapolli
1   LMU-Klinikum München, Medizinische Klinik und Poliklinik II
Lukas Macke
1   LMU-Klinikum München, Medizinische Klinik und Poliklinik II
Christian Schulz
1   LMU-Klinikum München, Medizinische Klinik und Poliklinik II
› Author Affiliations


Unter dem Begriff „menschliches Mikrobiom“ wird der Komplex aus Mikroorganismen – Bakterien, Viren, Pilze, Protozoen und Archaeen –, welche die Oberflächen, Gewebe und Flüssigkeiten des menschlichen Körpers besiedeln, zusammengefasst. Sie haben eine offensichtliche Rolle bei der Kanzerogenese und mit der Verbreitung neuer Hochdurchsatz-Sequenzierungsmethoden ist die Untersuchung dieser mikrobiellen Gemeinschaften wesentlich einfacher geworden. Diese Übersichtsarbeit beschreibt die aktuell verfügbare Evidenz über die Rolle des Mikrobioms bei der gastrointestinalen Karzinogenese.


The human microbiome includes the complex of microorganisms - bacteria, viruses, fungi, protozoa and archaea - that colonize surfaces, tissues and fluids of the human body. With the advent of new high-throughput sequencing methods, studying microbial communities has become much easier, and recent studies indicate a key role for the microbiome in carcinogenesis. This review describes the currently available evidence on the role of the gut microbiome in gastrointestinal carcinogenesis.

Publication History

Article published online:
29 June 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart, Germany

  • Literatur

  • 1 Human Microbiome Project Consortium.. Structure, function and diversity of the healthy human microbiome. Nature 2012; 486: 207-214
  • 2 Cho I, Blaser MJ. The human microbiome: at the interface of health and disease. Nat Rev Genet 2012; 13: 260-270
  • 3 Bray F, Ferlay J, Soerjomataram I. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J Clin 2018; 68: 394-424
  • 4 Forouzanfar MH, Afshin A, Alexander LT. et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016; 388: 1659-1724
  • 5 Jasperson KW, Tuohy TM, Neklason DW. et al. Hereditary and familial colon cancer. Gastroenterol 2010; 138: 2044-2058
  • 6 Plummer M, de Martel C, Vignat J. et al. Global burden of cancers attributable to infections in 2012: a synthetic analysis. Lancet Global Health 2016; 4: e609-e616
  • 7 Plummer M, Franceschi S, Vignat J. et al. Global burden of gastric cancer attributable to Helicobacter pylori. Int J Cancer 2015; 136: 487-490
  • 8 Malfertheiner P, Megraud F, O’Morain CA. et al. Management of Helicobacter pylori infection – the Maastricht V/Florence Consensus Report. Gut 2017; 66: 6-30
  • 9 Correa P, Piazuelo MB. The gastric precancerous cascade. J Dig Dis 2012; 13: 2-9
  • 10 Raderer M, Kiesewetter B, Ferreri AJ. Clinicopathologic characteristics and treatment of marginal zone lymphoma of mucosa-associated lymphoid tissue [MALT lymphoma]. CA Cancer J Clin 2016; 66: 153-171
  • 11 Zucca E, Copie-Bergman C, Ricardi U. et al. Gastric marginal zone lymphoma of MALT type: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2013; 24: vi144-148
  • 12 Bik EM, Eckburg PB, Gill SR. et al. Molecular analysis of the bacterial microbiota in the human stomach. Proc Natl Acad Sci 2006; 103: 732-737
  • 13 Andersson AF, Lindberg M, Jakobsson H. et al. Comparative analysis of human gut microbiota by barcoded pyrosequencing. PloS One 2008; 3: e2836-e2836
  • 14 Schulz C, Schütte K, Koch N. et al. The active bacterial assemblages of the upper GI tract in individuals with and without Helicobacter infection. Gut 2018; 67: 216-225
  • 15 Ferreira RM, Pereira-Marques J, Pinto-Ribeiro I. et al. Gastric microbial community profiling reveals a dysbiotic cancer-associated microbiota. Gut 2018; 67: 226-236
  • 16 Coker OO, Dai Z, Nie Y. et al. Mucosal microbiome dysbiosis in gastric carcinogenesis. Gut 2018; 67: 1024
  • 17 Liu X, Shao L, Liu X. et al. Alterations of gastric mucosal microbiota across different stomach microhabitats in a cohort of 276 patients with gastric cancer. EBio Med 2019; 40: 336-348
  • 18 Ling Z, Shao L, Liu X. et al. Regulatory T cells and plasmacytoid dendritic cells within the tumor microenvironment in gastric cancer are correlated with gastric microbiota dysbiosis: A preliminary study. Front Immunol 2019; 10: 533-533
  • 19 Gunathilake MN, Lee J, Choi IJ. et al. Association between the relative abundance of gastric microbiota and the risk of gastric cancer: a case-control study. Sci Rep 2019; 9: 13589-13589
  • 20 Vasapolli R, Schütte K, Schulz C. et al. Analysis of transcriptionally active bacteria throughout the gastrointestinal tract of healthy individuals. Gastroenterol 2019; 157: 1081-1092.e3
  • 21 Lertpiriyapong K, Whary MT, Muthupalani S. et al. Gastric colonisation with a restricted commensal microbiota replicates the promotion of neoplastic lesions by diverse intestinal microbiota in the Helicobacter pylori INS-GAS mouse model of gastric carcinogenesis. Gut 2014; 63: 54-63
  • 22 Yang L, Lu X, Nossa CW. et al. Inflammation and intestinal metaplasia of the distal esophagus are associated with alterations in the microbiome. Gastroenterol 2009; 137: 588-597
  • 23 Elliott DRF, Walker AW, O’Donovan M. et al. A non-endoscopic device to sample the oesophageal microbiota: a case-control study. Lancet Gastroenterol Hepatol 2017; 2: 32-42
  • 24 Bogaert J, Prenen H. Molecular genetics of colorectal cancer. Ann Gastroenterol 2014; 27: 9-14
  • 25 Yu J, Feng Q, Wong SH. et al. Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut 2017; 66: 70-78
  • 26 Chen W, Liu F, Ling Z. et al. Human intestinal lumen and mucosa-associated microbiota in patients with colorectal cancer. PLoS One 2012; 7: e39743
  • 27 Lu Y, Chen J, Zheng J. et al. Mucosal adherent bacterial dysbiosis in patients with colorectal adenomas. Sci Rep 2016; 6: 26337
  • 28 He Z, Gharaibeh RZ, Newsome RC. et al. Campylobacter jejuni promotes colorectal tumorigenesis through the action of cytolethal distending toxin. Gut 2019; 68: 289-300
  • 29 Tomkovich S, Yang Y, Winglee K. et al. Locoregional effects of microbiota in a preclinical model of colon carcinogenesis. Cancer Res 2017; 77: 2620-2632
  • 30 Castellarin M, Warren RL, Freeman JD. et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res 2012; 22: 299-306
  • 31 Flanagan L, Schmid J, Ebert M. et al. Fusobacterium nucleatum associates with stages of colorectal neoplasia development, colorectal cancer and disease outcome. Eur J Clin Microbiol Infect Dis 2014; 33: 1381-1390
  • 32 Mima K, Sukawa Y, Nishihara R. et al. Fusobacterium nucleatum and T cells in colorectal carcinoma. JAMA Oncol 2015; 1: 653-661
  • 33 Mima K, Nishihara R, Qian ZR. et al. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut 2016; 65: 1973-1980
  • 34 Bonnet M, Buc E, Sauvanet P. et al. Colonization of the human gut by E. coli and colorectal cancer risk. Clin Cancer Res 2014; 20: 859-867
  • 35 Kohoutova D, Smajs D, Moravkova P. et al. Escherichia coli strains of phylogenetic group B2 and D and bacteriocin production are associated with advanced colorectal neoplasia. BMC Infect Dis 2014; 14: 733
  • 36 Toprak NU, Yagci A, Gulluoglu BM. et al. A possible role of Bacteroides fragilis enterotoxin in the aetiology of colorectal cancer. Clin Microbiol Infect 2006; 12: 782-786
  • 37 Boleij A, Hechenbleikner EM, Goodwin AC. et al. The Bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients. Clin Infect Dis 2015; 60: 208-215
  • 38 Pleguezuelos-Manzano C, Puschhof J, Rosendahl HA. et al. Mutational signature in colorectal cancer caused by genotoxic pks[+] E. coli. Nature 2020; 580: 269-273