Synlett 2022; 33(10): 952-958
DOI: 10.1055/a-1822-9555
letter

Helical Amide Derivatives: Synthesis by Insertion of Aliphatic ­Primary Amines into Benzo-Fused 2,2′-Diphenoquinones and Dia­stereomeric Resolution

Mahmuda Akter
a   Department of Material and Environmental Chemistry, Graduate School of Engineering, Utsunomiya University, Utsunomiya, Tochigi 321-8585, Japan
,
b   Collaboration Department for Innovation (CDI), Utsunomiya University, Utsunomiya, Tochigi 321-8585, Japan
,
Takashi Kurihara
a   Department of Material and Environmental Chemistry, Graduate School of Engineering, Utsunomiya University, Utsunomiya, Tochigi 321-8585, Japan
,
Ken-ichi Iimura
a   Department of Material and Environmental Chemistry, Graduate School of Engineering, Utsunomiya University, Utsunomiya, Tochigi 321-8585, Japan
,
Michinori Karikomi
a   Department of Material and Environmental Chemistry, Graduate School of Engineering, Utsunomiya University, Utsunomiya, Tochigi 321-8585, Japan
› Institutsangaben
We would like to express our appreciation to the Collaboration Department for Innovation (CDI) of Utsunomiya University for financial support during this research project.


Abstract

We have developed a method for synthesizing novel helical amide derivatives. Nucleophilic primary amines were inserted into benzo-fused 2,2′-biphenoquinones to form helical amides containing seven-membered rings. When optically pure primary amines were used in this reaction, a mixture of two amide diastereoisomers was obtained and separated into diastereomerically pure products by high-performance liquid chromatography. In contrast, the reaction of enantiomerically pure benzo-fused 2,2′-biphenoquinones with achiral aliphatic primary amines afforded enantiomerically pure helical amides with stereospecificity and retention of configuration.

Supporting Information



Publikationsverlauf

Eingereicht: 19. Februar 2022

Angenommen nach Revision: 11. April 2022

Accepted Manuscript online:
11. April 2022

Artikel online veröffentlicht:
17. Mai 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Amabilino DB. Chem. Soc. Rev. 2009; 38: 669
    • 1b Chirality at the Nanoscale: Nanoparticles, Surfaces, Materials and More. Amabilino DB. Wiley-VCH; Weinheim: 2009
    • 2a Grimme S, Harren J, Sobanski A, Vögtle F. Eur. J. Org. Chem. 1998; 1491
    • 2b Urbano A. Angew. Chem. Int. Ed. 2003; 42: 3986
    • 2c Collins SK, Vachon MP. Org. Biomol. Chem. 2006; 4: 2518
    • 2d Rajca A, Miyasaki M. In Functional Organic Materials: Syntheses, Strategies and Applications . Müller T. J. J., Bunz U. H. F., Wiley-VCH; Weinheim: 2007: 547
    • 2e Dumitrascu F, Dumitrescu DG, Aron I. ARKIVOC . 2010;
    • 2f : 1
    • 2g Shen Y, Chen C.-F. Chem. Rev. 2012; 112: 1463
    • 2h Gingras M. Chem. Soc. Rev. 2013; 42: 968
    • 2i Gingras M, Félix G, Peresutti R. Chem. Soc. Rev. 2013; 42: 1007
    • 2j Gingras M. Chem. Soc. Rev. 2013; 42: 1051
    • 3a Caronna T, Sinisi R, Catellani M, Malpezzi L, Meille SV, Mele A. Chem. Commun. 2000; 1139
    • 3b Bunz UH. F. Angew. Chem. Int. Ed. 2010; 49: 5037
    • 3c Tsuji H, Mitsui C, Ilies L, Sato Y, Nakamura E. J. Am. Chem. Soc. 2007; 129: 11902
    • 3d Mitsui C, Soeda J, Miwa K, Tsuji H, Takeya J, Nakamura E. J. Am. Chem. Soc. 2012; 134: 5448
    • 3e Nakano M, Niimi K, Miyazaki E, Osaka I, Takimiya K. J. Org. Chem. 2012; 77: 8099
  • 4 Hossain MS, Akter M, Shahabuddin M, Salim MK.-i. Iimura, Karikomi M. Synlett 2022; 33: 277
  • 5 Salim M, Akutsu A, Kimura T, Minabe M, Karikomi M. Tetrahedron Lett. 2011; 52: 4518
  • 6 Salim M, Ubukata H, Kimura T, Karikomi M. Tetrahedron Lett. 2011; 52: 6591
  • 7 Salim M, Kimura T, Karikomi M. Heterocycles 2013; 87: 547
  • 8 Shahabuddin M, Salim M, Tomura M, Kimura T, Karikomi M. Tetrahedron Lett. 2016; 57: 5902
  • 9 Shahabuddin M, Akutsu A, Kimura T, Karikomi M. Synthesis 2017; 49: 1547
  • 10 Shahabuddin M, Ohgoshi K, Hossain MS, Kimura T, Karikomi M. Tetrahedron Lett. 2017; 58: 3704
  • 11 Shahabuddin M, Hossain MS, Kimura T, Karikomi M. Tetrahedron Lett. 2017; 58: 4491
  • 12 2a(a,df); General ProcedureA round-bottomed flask was charged with quinone 1a (48.7 mg, 0.10 mmol), anhyd CHCl3 (1.5 mL), and the appropriate primary amine (3.2 equiv), and the mixture was stirred at rt. The color of the solution changed from red to brown, and the reaction was complete in 24 h. The mixture was concentrated and passed through a normal-phase column chromatography [silica gel, hexane–EtOAc (4:6)] to give the helical amide [2a(a,d–f)] as a brown solid major product (yield: 18–64%) and a white solid HEBPOL (3ad) as a byproduct (yield: 6–81%).(P)-2a and (M)-2aBrown solid; yield: 64%; mp 245–250 °C. 1H NMR (500 MHz, CDCl3): δ = 0.75 (t, J = 7.5 Hz, 3 H), 1.22–1.39 (m, 1 H), 1.63–1.79 (m, 1 H), 3.20–3.32 (m, 1 H), 4.42–4.53 (m, 1 H), 6.48 (d, J = 9.5 Hz, 1 H), 6.58 (d, J = 8.5 Hz, 3 H), 6.72 (dd, J = 8.0 Hz, 2 H), 6.79 (d, J = 8.0 Hz, 1 H), 7.07–7.15 (m, 3 H), 7.31 (d, J = 9.5 Hz, 1 H), 7.33–7.37 (m, 2 H), 7.39–7.43 (m, 2 H), 7.45–7.50 (dd, J = 9.0 Hz, 2 H), 7.63 (d, J = 6.5 Hz, 1 H), 8.17 (d, J = 8.5 Hz, 1 H), 8.62 (d, J = 8.5 Hz, 1 H). 13C NMR (125 MHz, CDCl3): δ = 194.92, 166.09, 145.58, 143.17, 140.68, 139.97, 133.62, 132.82, 132.63, 132.39, 131.78, 131.47, 131.30, 130.84, 129.71, 129.31, 128.82, 128.15, 128.02, 127.99, 127.97, 127.83, 127.27, 127.19, 127.17, 126.89, 126.69, 126.57, 126.47, 126.35, 125.55, 125.46, 125.28, 125.25, 124.73, 124.32, 55.33, 33.47, 11.14. HRMS (EI): m/z [M]+ calcd for C39H27NO2: 541.2042; found: 541.2093. Chiral HPLC {Chiral PAK IG [CHCl3–hexane (2:3), 5 μL, 0.8 mL/min; λ = 310 nm]}: t R = 12.32 min [(P)-2aa], 8.16 min [(M)-2aa].