Fortschr Neurol Psychiatr 2023; 91(11): 455-465
DOI: 10.1055/a-1826-2766
Übersichtsarbeit

Kratom (Mitragyna speciosa): eine psychoaktive Pflanze mit Chancen und Risiken

Kratom (Mitragyna Speciosa): a Psychoactive Plant with Opportunities and Risks
Maximilian Gahr
1   Klinik für Psychiatrie und Psychotherapie III, Universitätsklinikum Ulm, Ulm, Germany
› Author Affiliations

Zusammenfassung

Kratom ist ein immergrüner Baum, der in Südostasien heimisch ist und dessen Blätter traditionell als Stimulans, als Therapie bei verschiedenen gesundheitlichen Problemen und zu religiösen Zwecken verwendet werden. Insbesondere in den USA (geringer auch in Europa) wird seit einigen Jahren eine relevante Prävalenz des Kratomkonsums beobachtet. In westlichen Ländern wird Kratom überwiegend als Analgetikum und Stimulans, zur Behandlung von Schmerzen und Opioidgebrauchsstörungen und zur günstigen Beeinflussung der psychischen Gesundheit (z. B. bei Depression, Angststörungen) verwendet. Die chemischen Hauptbestandteile von Kratom sind Alkaloide, von denen Mitragynin und 7-Hydroxymitragynin am bedeutsamsten erscheinen. Die Pharmakodynamik und -kinetik von Kratom sind komplex und unzureichend untersucht. Bekannt ist, dass Mitragynin und 7-Hydroxymitragynin Partialagonisten an humanen μ-Opioidrezeptoren und Antagonisten an κ- und δ-Opioidrezeptoren bei zusätzlichen Effekten an weiteren zentralen Rezeptoren sind. Die Verträglichkeit von Kratom scheint im Vergleich mit klassischen Opioiden besser zu sein, was mit fehlenden Effekten von Kratom auf β-Arrestin in Verbindung gebracht und als Ausgangspunkt für die Entwicklung besser verträglicher Opioide diskutiert wurde. Einige Alkaloide in Kratom sind Inhibitoren von CYP2D6, geringer auch CYP2C19 und CYP3A4. Das Abhängigkeitspotential von Kratom scheint geringer ausgeprägt zu sein als das von klassischen Opioiden, wobei die Datenlage dazu begrenzt ist und Kratomgebrauchsstörungen primär in westlichen Längern auftreten. Es sind zahlreiche Fälle von schwerwiegenden gesundheitlichen Problemen und Todesfälle im Zusammenhang mit Kratomkonsum in den USA bekannt, wobei in diesen Fällen meist mehrere Substanzen involviert waren. Kratomkonsum ist vermutlich mit hepatotoxischen und kardiotoxischen Effekten assoziiert. Kratom-assoziierte Morbidität und Mortalität unterscheiden sich zwischen westlichen Ländern und Südostasien, wo Kratomkonsum kein öffentliches Gesundheitsproblem darstellt, quantitativ erheblich. Als Gründe hierfür wurden der in westlichen Ländern verbreitete Mischkonsum, höhere Dosierungen konsumierten Kratoms, Verfälschungen und Verunreinigungen kommerziell erhältlicher Kratomprodukte in westlichen Ländern, pharmakokinetische Interaktionen und höhere Konzentrationen von 7-Hydroxymitragynin in getrockneten Kratomblättern (die typischerweise in westlichen Ländern konsumiert werden) im Vergleich mit frischen Blättern (die typischerweise in Südostasien konsumiert werden) genannt.

Abstract

Kratom is an evergreen tree that is native to Southeast Asia. Its leafs are traditionally used as a stimulant, a remedy for various health problems and for religious purposes. Especially in the US (in a lesser extent also in Europe) kratom use is significantly prevalent. In Western countries, kratom is used predominantly as an analgesic and stimulant, for the treatment of opioid use disorders, and for improving mental health (e. g., in depression, anxiety disorders). Main molecular constituents of kratom are alkaloids of which mitragynine and 7-hydroxymitragynine appear to be most important. Pharmacodynamics and -kinetics of kratom are complex and insufficiently studied. It is known that mitragynine and 7-hydroxymitragynine are partial agonist at human μ-opioid receptors and antagonists at κ- and δ-opioid receptors with additional effects at other central receptors. Tolerability of kratom is presumably better than that of classical opioids; this is probably due to missing effects of kratom on β-arrestin and discussed as a starting point for the development of opioids with improved tolerability. Some alkaloids of kratom are inhibitors of CYP26 and to a somewhat lesser degree of CYP2C19 and CYP3A4. The addictive potential of kratom appears to be lower than that of classical opioids; however, corresponding data is limited and kratom use disorders appear to occur primarily in Western countries. Several cases of severe health-related problems and deaths are known in the US; in these cases, however, polysubstance use was usually present. Kratom use is likely associated with hepatotoxicity and cardiotoxicity. Kratom-associated mortality and morbidity in Western countries are quantitatively significantly different from Southeast Asia, where kratom use is no public health problem. The reasons for this may be the combined use of substances (which is more prevalent in Western countries), higher dosages of consumed kratom, adulterations and contaminations of commercially available kratom in Western countries, pharmacokinetic interactions, and higher concentrations of 7-hydroxymitragynine in dried kratom leafs (that are typically consumed in Western countries) in comparison to fresh leafs (that are typically consumed in Southeast Asia).



Publication History

Received: 07 January 2022

Accepted after revision: 11 April 2022

Article published online:
25 May 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag
Rüdigerstraße 14,70469 Stuttgart, Germany

 
  • Literatur

  • 1 Lautenschlager F, Weiss M, Feuerer S, Wodarz N. Kratom-a short review for pain medicine. Schmerz 2021; Sep 17 1-6
  • 2 Prozialeck W, Jivan J, Andurkar S. Pharmacology of kratom: an emerging botanical agent with stimulant, analgesic and opioid-like effects. J Am Osteopath Assoc 2012; 112: 792-799
  • 3 Ramanathan S, McCurdy C. Kratom (Mitragyna speciosa): worldwise issues. Curr Oppin. Psychiatry 2020; 33: 312-318
  • 4 Hassan Z, Muzaimi M, Navaratnam V. et al. From Kratom to mitragynine and its derivates: physiological and behavioural effects related to use, abuse, and addiction. Neurosci Biobehav Rev 2013; 37: 138-151
  • 5 Adkins J, Boyer E, McCurdy C. Mitragyna speciosa, a psychoactive tre from Southeast Asia with opioid activity. Curr Top Med Chem 2011; 11: 1165-1175
  • 6 Singh D, Narayanan S, Vicknasingam B. Traditional and non-traditional uses of Mitragynine (Kratom): A survey of the literature. Brain Res Bull 2016; 126: 41-46
  • 7 Raffa R. ed. Kratom and other mitragynines: the chemistry and pharmacology of opioids from a non-opium source. Boca Raton: CRC Press; 2014
  • 8 Warner M, Kaufman N, Grundmann O. The pharmacology and toxicology of kratom: from traditional herb to drug of abuse. Int J Legal Med 2016; 130: 127-138
  • 9 Henningfield J, Fant R, Wang D. The abuse potential of kratom accoding to 8 factors of the controlled substances act: implications for regulation and research. Psychopharmacology 2018; 235
  • 10 Bin Abdullah M. Kratom Dependence and Treatment Options: A Comprehensive Review of the Literature. Curr Drug Targets 2020; 21: 1566-1579
  • 11 Kruegel A, Grundmann O. The medicinal chemistry and neuropharmacology of kratom: A preliminary discussion of a promising medicinal plant and analysis of its potential for abuse. Neuropharmacology 2018; 134: 108-120
  • 12 Singh D, Naray, Narayanan S, et al. Motives for using Kratom (Mitragyna speciosa Korth.) among regular users in Malaysia. J Ethnopharmacol 2019;233
  • 13 Assanangkornchai S, Muekthong A, Angsri-Sam N, Pattanasattayawong U. The Use of Mitragynine speciosa (“Krathom”), an active plant, in Thailand. Subst Use Misuse 2007; 42: 2145-2157
  • 14 Singh D, Narayanan A, Vicknasingam B. et al. Changing trends in the use of kratom (Mitragyna speciosa) in Southeast Asia. Hum Psychopharmacol 2017; 32
  • 15 Boyer E, Babu K, Macalino G. Self-treatment of opioid withdrawal with a dietary supplement, Kratom. Am J Addict 2007; 16: 352-356
  • 16 Grundmann O. Patterns of Kratom use and health impact in the US-Results from an online survey. Drug Alcohol Depend 2017; 176: 63-70
  • 17 Smith K, Lawson T. Prevalence and motivations for kratom use in a sample of substance users enrolled in a residential treatment program. Drug Alcohol Depend 2017; 180
  • 18 Garcia-Romeu A, Cox D, Smith K, Dunn K, Griffiths R. Kratom (Mitragyna speciosa): User demographics, use patterns, and implications for the opioid epidemic. Drug Alcohol Depend 2020; 208: 107849
  • 19 Coe M, Pillitteri J, Sembower M, Gerlach K, Henningfield J. Kratom as a substitute for opioids: Results from an online survey. Drug Alcohol Depend 2019; 202
  • 20 Bath R, Bucholz T, Buros A. et al. Self-reported Health Diagnoses and Demographic Correlats With Kratom Use: Results from and Online Survey. J Addict Med 2020; 14: 244-252
  • 21 Swogger M, Hart E, Erowid F. et al. Experiences of Kratom Users: A Qualitative Analysis. J Psychoactive Drugs 2015; 47: 360-367
  • 22 Smith K, Rogers J, Schriefer D, Grundmann O. Therapeutic benefit with caveats?: Analyzing social media data to understand the complexities of kratom use. Drug Alcohol Depend 2021; 226: 108879
  • 23 Rogers J, Smith K, Strickland K, Epstein E. Kratom Use in the US: Both a Regional Phenomenon and a White Midle-Class Phenomenon? Evidence from NSDU 2019 and an Online Convenience Sample. Front Pharmacol 2021; 12: 789075
  • 24 Smith K, Kelly E, Grundmann O. et al. Social, psychological, and aubstance se characteristics of U.S. adults who use kratom: Initial findings from an online, crowdsourced study. Exp Clin Psychopharmacol. 2021 Online Ahead of Print
  • 25 Post S, Spiller H, Chounthirath T, Smith G. Kratom exposures reported to United States poison control centers: 2011–2017. Clin Toxicol (Phila) 2019; 57: 847-854
  • 26 Graves J, Dilley J, Terpak L. et al. Kratom exposure among older adults reported to U.S. poison centers, 2014–2019. J Am Geriatr Soc 2021; 69: 2176-2184
  • 27 Schimmel J, Amioka E, Rockhill K. et al. Prevalence and description of kratom (Mitragyna speciosa) use in teh United States: a cross-sectional study. Addiction 2021; 116: 176-181
  • 28 Palamar J. Past-Year Kratom Use in the U.S.: Estimates From a Nationally Representative Sample. Am J Prev Med 2021; 61: 240-245
  • 29 Covvey J, Vogel S, Peckham A, Evoy K. Prevalence and characteristics of self-reported kratom use in a representative US general population sample. J Addict Dis 2020; 38: 506-513
  • 30 Sharma A, Cottler L, Bares C, Lopez-Quintero C. Kratom Use Among U.S. Adolescents: Analyses of the 2019 National Survey on Drug Use and Health. J Adolesc Health 2021; S1054-139X: 00502-00504
  • 31 Ingsathit A, Woratanarat P, Anukarahanonta T. et al. Prevalence of psychoactive drug use among drivers in Thailand: a roadside survey. Accid Anal Prev 2009; 41: 474-478
  • 32 Assanangkornchai S, Pattanasattayawong U, Samagsri N, Mukthong A. Substance use among high-school students in Southern Thailand: trends over 3 years (2002–2004). Drug Alcohol Depend 2007; 86: 167-174
  • 33 Davidson C, Cao D, King T. et al. A comparative analsis of kratom exposure cases in Thailand and the United States from 2010–2017. Am J Drug Alcohol Abuse 2021; 47: 74-83
  • 34 Müller E, Hillemacher T, Müller C. Kratom use fpr depresion/anxiety self-management: challanges during the COVID-19 pandemic – A case report. Heliyon 2021; 10: e07039
  • 35 Mülller E, Hillemacher T, Müller C. Kratom instrumentalization for severe pain self-management resulting in adiction – A case report of acute and chronic subjective effects. Heliyon 2020; 6: e04507
  • 36 Prozialeck W. Update on the Pharmacology and Legal Status of Kratom. J Am Osteopath Assoc 2016; 116: 802-809
  • 37 Griffin O, Web M. The Scheduling of Kratom and Selective Use of Data. J Psychoactive Drugs 2018; 50: 114-120
  • 38 Laohong K-O. Kratom now listed as legal herb. In. Bangkok Post; Bangkok: 2021
  • 39 Prozialeck W, Avery B, Boyer E. et al. Kratom policy: The challenge of blancing therapeutic potential with public safety. Int J Drug Policy 2019; 70: 70-77
  • 40 Vicknasingam B, Narayanan S, Beng G, Mansor S. The informal use of ketum (Mitragyna speciosa) for opioid withdrawal in the northern states of peninsular Malaysia and implications for drug substitution therapy. Int J Drug Policy 2010; 21: 283-288
  • 41 Singh D, Chear N, Narayanan S. et al. Patterns and reasons for kratom (Mitragyna speciosa) use among current and former opioid poly-drug users. J Ethnopharmacol 2020; 249: 112462
  • 42 Prevete E, Kuypers K, Theunissen E. et al. A systematic review of (pre)clinical studies on the therapeutic potentiaö and safety profile of kratom in humans. Hum Psychopharmacol 2021; e2805
  • 43 Sharma A, McCurdy C. Assessing the therapeutic potential and toxicity of Mitragyna speciosa in opioid use disorder. Expert Opin Drug Metab Toxicol 2021; 17: 255-257
  • 44 Ismail I, Wahab S, Sidi H. et al. Kratom and Future Treatment for the Opioid Addiction and Chronic Pain: Periculo Beneficium?. Curr Drug Targets 2019; 20: 166-172
  • 45 Yue K, Kopajtic T, Katz J. Abuse liability of mitragynine assessed with a self-administration procedure in rats. Psychopharmacolog (Berl) 2018; 235: 1823-2829
  • 46 Chin K-Y, Mark-Lee W. A Review on the Antinociceptive Effects of Mitragyna speciosa and Its Drivates on Animal Model. Curr Drug Targets 2018; 19: 1259-1365
  • 47 Gutridge A, Chakraborty S, Varga B. et al. Evaluation of Kratom Opioid Derivates as Potential Treatment Option for Alcohol Use Disorder. Front Pharmacol 2021; 12: 764885
  • 48 Johnson L, Balyan L, Magdalany A. et al. The Potential for Kratom as an Antidepressant and Antipsychotic. Yale J Biol Med 2020; 93: 283-289
  • 49 Levine M, Gao J, Satyanarayanan S. et al. S-adenosyl-1-methionine (SAMe), cannabidiol (CBD), and kratom in psychiatric disorders: Clinical and mechanistic considerations. Brain Behav Immun 2020; 85
  • 50 Hazrulrizawati A, Ramli A, Yusoff M. Indole Alkaloids from Plants as Potential Leads for Antidepresant Drugs: A Mini Review. Front Pharmacol 2017; 8: 96
  • 51 Swogger M, Walsh Z. Kratom use and mental health: A systematic review. Drug Alcohol Depend 2018; 183: 134-140
  • 52 Prozialeck W, Lamar P, Krupp M. et al. Kratom Use Within the Context of the Evolving Opioid Crisis and the COVID-19 Pandemic in the United States. Front Pharmacol 2021; 12
  • 53 Shellard E. The alkaloids of mitragyna with special reference to those of Mitragyna speciosa. Korth Bull Narc 1974; 26: 41-55
  • 54 Léon F, Habib E, Adkins J. et al. Phytochemical characterization of the leaves of Mitragyna speciosa grown in U.S.A. Nat Prod Commun 2009; 4: 907-910
  • 55 Takayama H. Chemistry and pharmacology of analgesic indole alkaloids from the Rubicaceous plant, Mitragyna Speciosa. Chem Pharm Bull; Tokyo: 2004. 52. 916-928
  • 56 Kruegel A, Gassaway M, Kapoor A. et al. Synthetic and receptor Signaling explorations of the Mitragyna alkaloids: Mitragynine as an atypical Molecular framework for opioid receptor Modulators. J Am Chem Soc 2016; 138: 6754-6764
  • 57 Ponglux D, Wongseripipatana S, Takayama H. et al. A new indole alkaloid, 7 alpha-Hydroxy-7H-mitragynine, from Mitragyna speciosa in Thailand. Planta Med 1994; 60
  • 58 Matsumoto K, Horie S, Takayama H. et al. Antinociception, tolerance and withdrawal symptoms induced by 7-hydroxymitragynine, an alkaloid from the Thai medicinal herb Mitragyna speciosa. Life Sci 2005; 78: 2-7
  • 59 Matsumoto K, Horie S, Ishikawa H. et al. Antinociceptive effect of 7-hydroxymitragynine in mice: discovery of an orally active opioid analgesic from the Thai medicinal herb Mitragyna speciosa. Life Sci 2004; 74: 2143-2155
  • 60 Lydecker A, Sharma A, McCurdy C. et al. Suspected Adulteration of Commercial Kratom Products with 7-Hydroxymitragynine. J Med Toxicol 2016; 12: 341-349
  • 61 Matsumoto K, Takayama H, Narita M. et al. MGM-9 [(E)-methyl 2-(3-ethyl-7a,12a-(epoxyethanoxy)-9-fluoro-1,2,3,4,6,7,12,12b-octahydro-8-methoxyindolo[2,3-a]quinolizin-2-yl)-3-methoxyacrylate], a derivate of the indole alkaloid mitragynine: a novel dual-acting mu- and kappa-opioid agonist with potent antinociceptive and weak rewarding effects in mice. Neuropharmacology 2008; 55: 154-165
  • 62 Takayama H, Ishikawa H, Kurihara M. et al. Studies on the synthesis and opioid agonistic activities of mitragynine-related indole alkaloids: discovery of opioid agonists structurally different from other opioid ligands. J Med Chem 2002; 45: 1949-1956
  • 63 Váradi A, Marrone G, Palmer T. et al. Mitragynine/Corynantheidone Pseudoindoxyls As Opioid Anagesics with Mu Agonism and Delta Antagonism, Which Do Not Recruit β-Arrestin-2. J Med Chem 2016; 59: 8381-8397
  • 64 Siuda E, Carr R, Rominger D, Violin J. Biased mu-opioid receptor ligans: a promising new generation of pain therapeutics. Curr Opin Pharmacol 2017; 32: 77-84
  • 65 Eastlack S, Cornett E, Kaye A. Kratom-Pharmacology, Clinical Implications, and Outlook: A Comprehensive Review. Pain Ther 2020; 9: 55-69
  • 66 Boyer E, Babu K, Adkins J, McCurdy C, Halpern J. Self-treatment of opioid withdrawal using kratom (Mitragyna speciosa korth). Addiction 2008; 103: 1048-1050
  • 67 Manda V, Avula B, Ali Z. et al. Evaluation of in vitro absorption, distribution, metabolism, ans excretion (ADME) properties of mitragynine, 7-hydroxymitragynine, and mitraphylline. Plant Med 2014; 80: 568-576
  • 68 Hartley C, Bulloch M, Penzak S. Clinical Pharmacology of the Dietary Supplement Kratom (MItragyna speciosa). J Clin Pharmacol. 2021 Online ahead of print
  • 69 Kamble S, Sharma A, King T. et al. Exploration of cytochrome P450 inhibition mediated drug-drug interaction potential of kratom alkaloids. Toxicol Lett 2020; 319: 148-154
  • 70 Hanapi N, Azizi J, Ismail S, Mansor S. Evaluation of Selected Malaysian Medicinal Plants on Phase I Drug Metabolizing Enzymes, CYP2C9, CYP2D6 and CYP3A4 Activities in vitro. Int J Pharm 2010; 6: 494-499
  • 71 Kong W, Chik Z, Ramachandra M. et al. Evaluation of the effects of Mitragyna speciosa alkaloid extract on cytochrome P450 enzymes using a high throughput assay. Molecules Molecules 16: 7344-7356
  • 72 Trakulsrichai S, Sathirakul K, Auparakkitanon S. et al. Pharmakokinetics of mitragynine in man. Drug Des Develop Ther 2015; 9: 2421-2429
  • 73 Vuppala P, Boddu S, Furr E, McCurdy C, Avery B. Simple, Sensitive, High-Throughout Method for the Quantification of Mitragynine in Rat Plasma Using UPLS-MS and Its Application to an Intravenous Pharmakokinetic Study. Chromatographia 2011; 27: 1726-1732
  • 74 Kruegel A, Uprety R, Grinnell S. et al. 7-Hydroxymitragynine Is an Active metabolite of Mitragynine and a Key Mediator of Its Analgesic Effects. ACS Cent Sci 2019; 5: 992-1001
  • 75 Kamble S, Sharma A, King T. et al. Metabolite profiling and identification of enzymes responsible for the metabolism of mitragynine, the major alkaloid of Mitragyna speciosa (kratom). Xenobiotica 2019; 49: 1279-1288
  • 76 Yusof S, Uzid M, Teh E-H. et al. Rate and extent of mitragynine and 7-hydroxymitragynine blood-brain barrier transport and their intra-brain distribution: the missing link in pharmacodynamic studies. Addict Biol 2019; 24: 935-945
  • 77 Meier U, Mercer-Chalmers-Bender K, Scheurer E, Dussy F. Development, validation, and application of an LC-MS/MS method for mitragynine and 7-hydroxymitragynine analysis in hair. Drug Test Anal 2020; 12: 280-284
  • 78 Sufka J, Loria M, Lewellyn K. et al. The effect of Salvia divinorum and Mitragyna speciosa extracts, fraction and major constituents on place aversion and place preference in rats. J Ethnopharmacol 2014; 151: 361-364
  • 79 Wilson L, Chakraborty S, Eans S. et al. Kratom Alkaloids, Natural and Semi-Synthetic, Show Less Physical Dependence and Ameliorate Opioid Withdrawal. Cell Mol Neurobiol 2021; 41: 1131-1143
  • 80 Kapp F, Maurer H, Auwärter V, Winkelmann M, Hermanns-Clausen M. Intrahepatic cholestasis following abuse of powdered kratom (Mitragyna speciosa). J Med Toxicol 2011; 7: 227-231
  • 81 Singh D, Müller C, Vicknasingam B. Kratom (Mktragyna speciosa) dependence, withdrawal symptoms and craving in regular users. Drug Alcohol Depend 2014; 139: 132-137
  • 82 Raffa R. ed. Kratom: the epidemiology, use and abuse, addiction potential, and legal status. Boca Ratone, Florida: CRC Press; 2014: 309-320
  • 83 Saingam D, Assanangkornchai S, Geater A, Lerkiatbundit S. Validation of Kratom (Mitragyna speciosa Korth.) Dependence Scale (KDS): a dependence screen for internationally emerging psychoactive substace. Subtst Abus 2014; 35: 276-283
  • 84 Singh D, Narayanan A, Müller C. et al. Severity of Kratom (Mitragyna speciosa Korth.) Psychological Withdrawal Symptoms. J Psychoactive Drugs 2018; 50: 445-450
  • 85 Weiss S, Douglas H. Treatment of Kratom Withdrawal and Dependence With Buprenorphine/Naloxone: A case Series and Systematic Review. J Addict Med 2021; 15: 167-172
  • 86 Singh DP, Narayanan SP, Müller CP. et al. Long-Term Cognitive Effects of Kratom (Mitragyna speciosa Korth.) Use. J Psychoactive Drugs 2019; 2019: 1
  • 87 Singh D, Abdullah M, Vicknasingam B, Müller C. Substance use disorder related to kratom (Mitragyna speciosa) use in Malaysia. Curr Psychopharmacol 2019; 8: 64-71
  • 88 Singh D, Müller C, Vicknasingam B, Mansor S. Social Functioning of Kratom (Mitragyna speciosa) Users in Malaysia. J Psychoactive Drugs 2015; 47: 125-131
  • 89 Schimmel J, Dart R. Kratom (Mitragyna Speciosa) Liver Injury: A Comprehensive Review. Drugs 2020; 80: 263-283
  • 90 Leong Bin Abdullah M, Singh D. The Adverse Cardiovascular Effects and Cardiotoxicity of Kratom (Mitragyna speciosa Korth.): A Comprehensive Review. Front Pharmacol. 2021 EPUB AHEAD OF PRINT
  • 91 Veltri C, Grundmann O. Current perspective on the impact of Kratom use. Subst Abuse Rehabil 2019; 10: 23-31
  • 92 Nacca N, Schult R, Spink D. et al. Kratom Adulterated with Phenethylamine and Associated Intrecerebral Hemorrhage: Linking Toxicologists and Public Health Officials to Indentify Dangerous Adulterants. J Med Toxicol 2020; 16: 71-74
  • 93 Arndt T, Claussen U, Güssregen B. et al. Kratom alkaloids and O-desmethyltramadol in urine of a “Krypton” herbal mixture consumer. Forensic Sci Int 2011; 208: 47-52
  • 94 Ramanathan S, McCurdy C. Kratom (Mitragyna speciosa): worldwide issues. Curr Opin Psychiatry 2020; 33: 312-318