Drug Res (Stuttg) 2022; 72(06): 312-318
DOI: 10.1055/a-1830-8716
Original Article

Melatonin Increases the Sensitivity of Osteosarcoma Cells to Chemotherapy Drug Cisplatin

Foroogh Hosseini
1   Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
,
Dariush Shanehbandi
2   Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
,
Jafar Soleimanpour
3   Department of Orthopedics Surgery, Shohada Teaching Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
,
Bahman Yousefi
1   Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
,
Forough Alemi
1   Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
› Author Affiliations
Funding The research grant was provided by Clinical Research Development Unit, Shohada Hospital, Tabriz University of Medical Sciences (grant no: 64876).

Abstract

Chemotherapy, which is one of the common treatments for osteosarcoma (OS), has many side effects and in some cases has low effectiveness due to chemoresistance, hence it is vital to study new therapies for OS. In this regard, we combined melatonin with cisplatin and evaluate their effect on MG63 OS cells. Since melatonin has anti-cancer properties, we hypothesized that its combination with cisplatin could increase the effectiveness of cisplatin. Firstly, MTT assay was used to evaluate the cell viability and cytotoxicity of cisplatin on MG63 cells and the results showed that melatonin in combination with cisplatin increases the sensitivity of MG63 cells to cisplatin. In addition, qRT-PCR results showed that the expressions of miR-181 and P53, CYLD, CBX7 and BCL2 genes change in MG63 cells after treatment with the combination of cisplatin and melatonin, so that the expression of P53, CYLD and CBX7 increased and the expression of BCL2 and miR-181b decreases significantly. Furthermore, analysis of Annexin V/FITC assay data revealed that the rate of apoptosis in MG63 OS cell line remarkably promoted after treated with cisplatin and melatonin combination. As a result, our findings show that melatonin in combination with cisplatin increases the effectiveness of cisplatin in osteosarcoma cells and this study provides a new therapeutic approach for OS.



Publication History

Received: 15 January 2022

Accepted: 12 April 2022

Article published online:
30 May 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Czarnecka AM, Synoradzki K, Firlej W, Bartnik E, Sobczuk P, Fiedorowicz M. et al. Molecular biology of osteosarcoma. Cancers. 2020; 12: 2130
  • 2 Harrison DJ, Geller DS, Gill JD, Lewis VO, Gorlick R. Current and future therapeutic approaches for osteosarcoma. Expert review of anticancer therapy 2018; 18: 39-50
  • 3 Zhao X, Wu Q, Gong X, Liu J, Ma Y. Osteosarcoma: a review of current and future therapeutic approaches. BioMedical Engineering OnLine 2021; 20: 1-14.
  • 4 Ghosh S. Cisplatin: The first metal based anticancer drug. Bioorganic chemistry 2019; 88: 102925
  • 5 Kim M, Jung J-Y, Choi S, Lee H, Morales LD, Koh J-T. et al. GFRA1 promotes cisplatin-induced chemoresistance in osteosarcoma by inducing autophagy. Autophagy. 2017; 13: 149-68.
  • 6 Wang Y, Deng X, Yu C, Zhao G, Zhou J, Zhang G. et al. Synergistic inhibitory effects of capsaicin combined with cisplatin on human osteosarcoma in culture and in xenografts. Journal of Experimental & Clinical Cancer Research 2018; 37: 1-17
  • 7 Dasari S, Tchounwou PB. Cisplatin in cancer therapy: molecular mechanisms of action. European journal of pharmacology 2014; 740: 364-378
  • 8 Lu K-H, Lin R-C, Yang J-S, Yang W-E, Reiter RJ, Yang S-F. Molecular and cellular mechanisms of melatonin in osteosarcoma. Cells. 2019; 8: 1618
  • 9 Fathizadeh H, Mirzaei H, Asemi Z. Melatonin: an anti-tumor agent for osteosarcoma. Cancer cell international 2019; 19: 1-8
  • 10 Reiter RJ, Rosales-Corral SA, Tan D-X, Acuna-Castroviejo D, Qin L, Yang S-F. et al. Melatonin, a full service anti-cancer agent: inhibition of initiation, progression and metastasis. International journal of molecular sciences 2017; 18: 843
  • 11 Liu J, Shi W, Wu C, Ju J, Jiang J. miR‑181b as a key regulator of the oncogenic process and its clinical implications in cancer. Biomedical reports 2014; 2: 7-11
  • 12 Wang M, Xie R, Si H, Shen B. Integrated bioinformatics analysis of miRNA expression in osteosarcoma. Artificial cells, nanomedicine, and biotechnology 2017; 45: 936-943
  • 13 Wan J, Long F, Zhang C, Liu Y. miR‑181b‑p53 negative feedback axis regulates osteosarcoma cell proliferation and invasion. International journal of molecular medicine 2020; 45: 1803-1813
  • 14 Xu M, Li J-M. MicroRNA-181b promotes osteosarcoma cell proliferation, invasion and migration in vitro via targeting RASSF8. International Journal Of Clinical And Experimental Pathology 2016; 9: 6145-6153
  • 15 Mansueto G, Forzati F, Ferraro A, Pallante P, Bianco M, Esposito F. et al. Identification of a new pathway for tumor progression: MicroRNA-181b up-regulation and CBX7 down-regulation by HMGA1 protein. Genes & cancer 2010; 1: 210-224
  • 16 Andalib A, Rashed S, Dehbashi M, Hajati J, Noorbakhsh F, Ganjalikhani-Hakemi M. The upregulation of hsa-mir-181b-1 and downregulation of its target CYLD in the late-stage of tumor progression of breast cancer. Indian Journal of Clinical Biochemistry 2020; 35: 312-321
  • 17 Li D, Jian W, Wei C, Song H, Gu Y, Luo Y. et al. Down-regulation of miR-181b promotes apoptosis by targeting CYLD in thyroid papillary cancer. International journal of clinical and experimental pathology 2014; 7: 7672
  • 18 Chen J, Zhou J, Chen X, Yang B, Wang D, Yang P. et al. miRNA-449a is downregulated in osteosarcoma and promotes cell apoptosis by targeting BCL2. Tumor Biology 2015; 36: 8221-8229
  • 19 Nedelcu T, Kubista B, Koller A, Sulzbacher I, Mosberger I, Arrich F. et al. Livin and Bcl-2 expression in high-grade osteosarcoma. Journal of cancer research and clinical oncology 2008; 134: 237-244
  • 20 Zhao Y, Zhang C-l, Zeng B-f, Gao T-T, Oda Y. Enhanced chemosensitivity of drug-resistant osteosarcoma cells by lentivirus-mediated Bcl-2 silencing. Biochemical and biophysical research communications 2009; 390: 642-647
  • 21 Ye S, Shen J, Choy E, Yang C, Mankin H, Hornicek F. et al. p53 overexpression increases chemosensitivity in multidrug-resistant osteosarcoma cell lines. Cancer chemotherapy and pharmacology 2016; 77: 349-356
  • 22 Yao D, Cai G-H, Chen J, Ling R, Wu S-X, Li Y-P. Prognostic value of p53 alterations in human osteosarcoma: a meta analysis. International journal of clinical and experimental pathology 2014; 7: 6725
  • 23 Cutando A, Lopez-Valverde A, Arias-Santiago S, De Vicente J, De Diego RG. Role of melatonin in cancer treatment. Anticancer research 2012; 32: 2747-2753
  • 24 Walters DK, Steinmann P, Langsam B, Schmutz S, Born W, Fuchs B. Identification of potential chemoresistance genes in osteosarcoma. Anticancer research 2008; 28: 673-679
  • 25 Lilienthal I, Herold N. Targeting molecular mechanisms underlying treatment efficacy and resistance in osteosarcoma: a review of current and future strategies. International Journal of Molecular Sciences 2020; 21: 6885
  • 26 Li Y, Zou J, Li B, Du J. Anticancer effects of melatonin via regulating lncRNA JPX-Wnt/β-catenin signalling pathway in human osteosarcoma cells. Journal of Cellular and Molecular Medicine 2021; 25: 9543-56.
  • 27 Li Y, Li S, Zhou Y, Meng X, Zhang J-J, Xu D-P. et al. Melatonin for the prevention and treatment of cancer. Oncotarget. 2017; 8: 39896
  • 28 Vimalraj S, Saravanan S, Raghunandhakumar S, Anuradha D. Melatonin regulates tumor angiogenesis via miR-424-5p/VEGFA signaling pathway in osteosarcoma. Life Sciences 2020; 256: 118011
  • 29 Najafi M, Salehi E, Farhood B, Nashtaei MS, Hashemi Goradel N, Khanlarkhani N. et al. Adjuvant chemotherapy with melatonin for targeting human cancers: A review. Journal of cellular physiology 2019; 234: 2356-72.
  • 30 Mir SM, Yousefi B, Marjani A, Rahimi M, Qujeq D. The sensitization of melatonin in osteosarcoma cells by suppression of anti-apoptotic proteins. Pharmaceutical Sciences 2020; 26: 159-64.
  • 31 Liu H-N, Qie P, Yang G, Song Y-B. miR-181b inhibits chemoresistance in cisplatin-resistant H446 small cell lung cancer cells by targeting Bcl-2. Archives of medical science: AMS 2018; 14: 745
  • 32 Wang X, Chen X, Meng Q, Jing H, Lu H, Yang Y. et al. MiR-181b regulates cisplatin chemosensitivity and metastasis by targeting TGFβR1/Smad signaling pathway in NSCLC. Scientific reports 2015; 5: 1-15
  • 33 Zhao L-D, Zheng W-W, Wang G-X, Kang X-C, Qin L, Ji J-J. et al. Epigenetic silencing of miR-181b contributes to tumorigenicity in colorectal cancer by targeting RASSF1A. International journal of oncology 2016; 48: 1977-1984
  • 34 Li W-h, Wu H-j, Li Y-x, Pan H-g, Meng T, Wang X. MicroRNA-143 promotes apoptosis of osteosarcoma cells by caspase-3 activation via targeting Bcl-2. Biomedicine & pharmacotherapy 2016; 80: 8-15
  • 35 Radha G, Raghavan SC. BCL2: A promising cancer therapeutic target. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer. 2017; 1868: 309-314
  • 36 Biswas SK, Huang J, Persaud S, Basu A. Down-regulation of Bcl-2 is associated with cisplatin resistance in human small cell lung cancer H69 cells. Molecular cancer therapeutics 2004; 3: 327-334
  • 37 Kutuk O, Arisan ED, Tezil T, Shoshan MC, Basaga H. Cisplatin overcomes Bcl-2-mediated resistance to apoptosis via preferential engagement of Bak: critical role of Noxa-mediated lipid peroxidation. Carcinogenesis. 2009; 30: 1517-1527
  • 38 Li W, Wu J, Li Z, Zhou Z, Zheng C, Lin L. et al. Melatonin induces cell apoptosis in Mia PaCa-2 cells via the suppression of nuclear factor-κB and activation of ERK and JNK: A novel therapeutic implication for pancreatic cancer. Oncology reports 2016; 36: 2861-2867
  • 39 Li W, Fan M, Chen Y, Zhao Q, Song C, Yan Y. et al. Melatonin induces cell apoptosis in AGS cells through the activation of JNK and P38 MAPK and the suppression of nuclear factor-kappa B: A novel therapeutic implication for gastric cancer. Cellular Physiology and Biochemistry 2015; 37: 2323-2338
  • 40 Bennukul K, Numkliang S, Leardkamolkarn V. Melatonin attenuates cisplatin-induced HepG2 cell death via the regulation of mTOR and ERCC1 expressions. World journal of hepatology 2014; 6: 230
  • 41 Zhang X, Yu J, Zhao C, Ren H, Yuan Z, Zhang B. et al. MiR-181b-5p modulates chemosensitivity of glioma cells to temozolomide by targeting Bcl-2. Biomedicine & Pharmacotherapy 2019; 109: 2192-202.
  • 42 Sun Y, Xia P, Zhang H, Liu B, Shi Y. P53 is required for Doxorubicin-induced apoptosis via the TGF-beta signaling pathway in osteosarcoma-derived cells. American journal of cancer research 2016; 6: 114
  • 43 Chen X, Lv C, Zhu X, Lin W, Wang L, Huang Z. et al. MicroRNA‑504 modulates osteosarcoma cell chemoresistance to cisplatin by targeting p53. Oncology letters 2019; 17: 1664-1674
  • 44 Han J-Y, Chung Y-J, Park SW, Kim JS, Rhyu M-G, Kim H-K. et al. The relationship between cisplatin-induced apoptosis and p53, bcl-2 and bax expression in human lung cancer cells. The Korean journal of internal medicine 1999; 14: 42
  • 45 Casares C, Ramírez-Camacho R, Trinidad A, Roldán A, Jorge E, García-Berrocal JR. Reactive oxygen species in apoptosis induced by cisplatin: review of physiopathological mechanisms in animal models. European Archives of Oto-Rhino-Laryngology 2012; 269: 2455-2459
  • 46 Gholami M, Saki G, Hemadi M, Khodadadi A. Effect of melatonin on the expression of apoptotic genes in vitrified-thawed spermatogonia stem cells type A of 6-day-old mice. Iranian journal of basic medical sciences 2013; 16: 906
  • 47 Santoro R, Marani M, Blandino G, Muti P, Strano S. Melatonin triggers p53Ser phosphorylation and prevents DNA damage accumulation. Oncogene. 2012; 31: 2931-2942
  • 48 Li R, Yan Q, Tian P, Wang Y, Wang J, Tao N. et al. CBX7 inhibits cell growth and motility and induces apoptosis in cervical cancer cells. Molecular Therapy-Oncolytics 2019; 15: 108-16.
  • 49 Hayashi M, Jono H, Shinriki S, Nakamura T, Guo J, Sueta A. et al. Clinical significance of CYLD downregulation in breast cancer. Breast cancer research and treatment 2014; 143: 447-457
  • 50 Zhu M, Zhou X, Du Y, Huang Z, Zhu J, Xu J. et al. miR-20a induces cisplatin resistance of a human gastric cancer cell line via targeting CYLD. Molecular medicine reports 2016; 14: 1742-50.