Synlett 2023; 34(06): 507-534
DOI: 10.1055/a-1894-8417
account
Chemical Synthesis and Catalysis in India

Synthesis of Heterocyclic Scaffolds via Prins, Oxonium-Ene and Related Cyclization Reactions

Anil K. Saikia
I am grateful to the Council of Scientific and Industrial Research (CSIR), New Delhi, (Grant Nos. 01(1809)/02/EMR-II, 01(2332)/09/EMR-II, 02/0159/13/EMR-II, 02/(0364)/19/EMR-II and 02(0364)19/EMR-II), the Department of Science and Technology (DST), New Delhi, (Grant No. SR/S1/OC-33/2007), the Science and Engineering Research Board (SERB), New Delhi, (Grant No. EMR/2016/006411) for financial support, and the Centre of Excellence-Frontier Areas of Science and Technology (COE-FAST) Program of the Ministry of Human Resources Development (MHRD), Ministry of Education (Grant No. 5-5/2014-TS VII) and the North East Centre for Biological Sciences and Healthcare Engineering (NECBH), Indian Institute of Technology Guwahati (Grant No. BT/COE/34/SP28408/2018) for NMR and XRD facilities.


Abstract

A variety of oxygen, nitrogen and sulfur heterocyclic compounds are synthesized via one-pot multicomponent Prins, aza-Prins, thia-Prins, oxonium-ene, iminium-ene and thionium-ene cyclization reactions. The reactions proceeds with high diastereo- and regioselectivity. Importantly, C–C, C–N, C–O and C–S bonds are formed in a singsle step. These procedures are extended for the synthesis of biologically active molecules and natural products.

1 Introduction

2 Prins Cyclization Reactions

3 Oxonium-Ene Cyclization Reactions

4 Conclusion



Publication History

Received: 29 May 2022

Accepted after revision: 08 July 2022

Accepted Manuscript online:
08 July 2022

Article published online:
19 August 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Tian X, Rychnovosky SD. Org. Lett. 2007; 9: 4955
    • 1b Ringel M, Greenough RC, Roemer S, Connor D, Gutt AL, Blair B, Kanter G, von Strandtmann M. J. Antibiot. 1977; 30: 371
    • 1c Bode HB, Zeeck A. J. Chem. Soc., Perkin Trans. 1. 2000; 2665
    • 1d Michael JP. Nat. Prod. Rep. 2000; 17: 579
    • 1e Sasaki M, Fuwa H. Nat. Prod. Rep. 2008; 25: 401
    • 1f Woodward RB, Heusler K, Gosteli J, Naegeli P, Oppolzer W, Ramage R, Ranganathan S, Vorbruggen H. J. Am. Chem. Soc. 1966; 88: 852
    • 2a Mack DJ, Guo B, Njardarson JT. Chem. Commun. 2012; 48: 7844
    • 2b Oertling H, Brocke C, Loges H, Machinek A. EP2168957A2 2010
    • 2c Liu W.-B, He H, Dai L.-X, You S.-L. Synthesis 2009; 2076
    • 2d Wang H, Li Y, Sun F, Feng Y, Jin K, Wang X. J. Org. Chem. 2008; 73: 8639
    • 2e Wu CJ, Lee SH, Yun H, Lee BY. Organometallics 2007; 26: 6685
    • 3a Yasumoto T, Murata M. Chem. Rev. 1993; 93: 1897
    • 3b Faulkner DJ. Nat. Prod. Rep. 1984; 1: 251
    • 3c Vinals JF, Kiwala J, Hruza DE, Hall JB, Vock MH. A. US Patent 4070491, 1978
    • 4a Prins HJ. Proc. Acad. Sci. Amsterdam 1919; 22: 51
    • 4b Prins HJ. Chem. Weekbl. 1919; 16: 1510
  • 5 Hanschke E. Chem. Ber. 1955; 88: 1053
  • 6 Olier C, Kaafarani M, Gasdtaldi S, Bertrand MP. Tetrahedron 2012; 66: 413
  • 7 Zhang Z, Tong R. Synthesis 2017; 49: 4899
  • 8 Alder RW, Harvey JN, Oakley MT. J. Am. Chem. Soc. 2002; 124: 4960
    • 9a Hanessian S, Tremblay M, Peterson JF. W. J. Am. Chem. Soc. 2004; 126: 6064
    • 9b Díez-Poza C, Barbero A. Eur. J. Org. Chem. 2017; 4651
    • 9c Díez-Poza C, Barbero H, Diez-Varga A, Barbero H. Prog. Heterocycl. Chem. 2018; 30: 13
    • 9d Abdul-Rashed S, Holt C, Frontier AJ. Synthesis 2020; 52: 1919
    • 9e Indu S, Kaliappan KP. Org. Biomol. Chem. 2020; 18: 3965
    • 9f Guo L.-D, Zhang Y, Hu J, Ning C, Fu H, Chen Y, Xu J. Nat. Commun. 2020; 11: 3538
    • 9g Kamakura D, Todoroki H, Urabe D, Hagiwara K, Inoue M. Angew. Chem. Int. Ed. 2020; 59: 479
    • 9h Devi N, Borthakur U, Saikia AK. Recent Developments in the Synthesis of Bioactive Natural Products Using Prins-Type Cyclization. In Studies in Natural Products Chemistry, 1st ed., Vol. 70; 2021, pp. 265–312.
  • 10 Huang J, Bao W, Huang S, Yang W, Lizhi Z, Du G, Lee C.-S. Org. Lett. 2018; 20: 7466
  • 11 Peh GR, Floreancig PE. Org. Lett. 2012; 14: 5614
  • 12 Yamini V, Reddy KM, Krishna AS, Lakshmi JK, Ghosh S. J. Chem. Sci. 2019; 131: 25
  • 13 Bahnck KB, Rychnovsky SD. J. Am. Chem. Soc. 2008; 130: 13177
  • 14 Keck GE, Poudel YB, Cummins TJ, Rudra A, Cove JA. J. Am. Chem. Soc. 2011; 133: 744
  • 15 Zhang Y, Guo Q, Sun X, Lu J, Cao Y, Pu Q, Chu Z, Gao L, Song Z. Angew. Chem. Int. Ed. 2018; 57: 942
  • 16 Chen W, Yang X.-D, Tan W.-Y, Zhang X.-Y, Liao X.-L, Zhang H. Angew. Chem. Int. Ed. 2017; 56: 12327
    • 17a Rahman MA, Haque A, Yadav JS. Tetrahedron Lett. 2020; 61: 152149
    • 17b Yadav JS, Singh VK, Thirupathaiah B, Reddy AB. Tetrahedron Lett. 2014; 55: 4427
    • 17c Yadav JS, Rahman MdA, Reddy NM, Prasad AR, Al Khazim Al Ghamdi A. Synlett 2014; 25: 661
    • 17d Yadav JS, Reddy PA. N, Reddy YJ, Meraj S, Prasad AR. Eur. J. Org. Chem. 2013; 6317
    • 17e Yadav JS, Reddy NM, Reddy PA. N, Ather H, Prasad AR. Synthesis 2010; 1473
    • 17f Yadav JS, Thrimurtulu N, Venkatesh M, Prasad AR. Synthesis 2010; 431
    • 17g Yadav JS, Narasimhulu G, Reddy NM, Reddy BV. S. Tetrahedron Lett. 2010; 51: 1574
    • 17h Yadav JS, Padmavani B, Reddy BV. S, Venugopal C, Rao AB. Synlett 2007; 2045
    • 18a Corminboeuf O, Overman LE, Pennington LD. J. Am. Chem. Soc. 2003; 125: 6650
    • 18b Lebsack AD, Overman LE, Valentekovich RJ. J. Am. Chem. Soc. 2001; 123: 4851
    • 19a Seden PT, Charmant JP. H, Willis CL. Org. Lett. 2008; 10: 1637
    • 19b Parker GD, Seden PT, Willis CL. Tetrahedron Lett. 2009; 50: 3686
    • 19c Barry CS, Bushby N, Charmant JP. H, Elsworth JD, Harding JR, Willis CL. Chem. Commun. 2005; 40: 5097
    • 19d Cons BD, Bunt AJ, Bailey CD, Willis CL. Org. Lett. 2013; 15: 2046
    • 20a Li B, Lai Y.-C, Zhao Y, Wong Y.-H, Shen Z.-L, Loh T.-P. Angew. Chem. Int. Ed. 2012; 51: 10619
    • 20b Angeline Lee C.-H, Loh T.-P. Tetrahedron Lett. 2006; 47: 1641
    • 21a Reddy EP, Padmaja P, Shekar PC, Reddy KK, Reddy BV. S. Tetrahedron Lett. 2022; 97: 153746
    • 21b Satteyyanaidu V, Chandrashekhar R, Reddy BV. S, Lalli C. Eur. J. Org. Chem. 2021; 138
    • 21c Someswarao B, Rasvan Khan P, Reddy BJ. M, Sridhar B, Reddy BV. S. Org. Chem. Front. 2018; 5: 1320
    • 21d Reddy BV. S, Swathi V, Swain M, Bhadra MP, Sridhar B, Satyanarayana D, Jagadeesh B. Org. Lett. 2014; 16: 6267
    • 21e Reddy BV. S, Medaboina D, Sridhar B, Singarapu KK. J. Org. Chem. 2013; 78: 8161
    • 22a Hernandez JJ, Frontier AJ. Org. Lett. 2021; 23: 1782
    • 22b Abdul-Rashed S, Alachouzos G, Brennessel WW, Frontier AJ. Org. Lett. 2020; 22: 4350
    • 22c Alachouzos G, Frontier AJ. J. Am. Chem. Soc. 2019; 141: 118
    • 22d Alachouzos G, Frontier AJ. Angew. Chem. Int. Ed. 2017; 56: 15030
    • 23a Mittapalli RR, Coles SJ, Klooster WT, Dobbs AP. J. Org. Chem. 2021; 86: 2076
    • 23b Mittapalli RR, Guesne SJ. J, Parker RJ, Klooster WT, Coles SJ, Skidmore J, Dobbs AP. Org. Lett. 2019; 21: 350
    • 23c Chio FK. I, Guesne SJ. J, Hassall L, McGuire T, Dobbs AP. J. Org. Chem. 2015; 80: 9868
    • 23d Dobbs AP, Pivnevi L, Penny MJ, Martinovic S, Iley JN, Stephenson PT. Chem. Commun. 2006; 29: 3134
    • 23e Dobbs AP, Guesne SJ. J, Martinovic S, Coles SJ, Hursthouse MB. J. Org. Chem. 2003; 68: 7880
    • 24a Diaz-Oviedo CD, Maji R, List B. J. Am. Chem. Soc. 2021; 143: 20598
    • 24b Liu L, Kaib PS. J, Tap A, List B. J. Am. Chem. Soc. 2016; 138: 10822
    • 24c Xie Y, Cheng G.-J, Lee S, Kaib PS. J, Thiel W, List B. J. Am. Chem. Soc. 2016; 138: 14538
    • 24d Tsui GC, Liu L, List B. Angew. Chem. Int. Ed. 2015; 54: 7703
  • 25 Alder K, Pascher F, Schmitz A. Ber. Dtsch Chem. Ges. 1943; 76: 27
    • 26a Mikami K, Shimizu M. Chem. Rev. 1992; 92: 1021
    • 26b Mikami K, Sawa E, Terada M. Tetrahedron: Asymmetry. 1991; 2: 1403
    • 27a Overman LE, Blumenkopf TA. J. Am. Chem. Soc. 1986; 108: 3516
    • 27b Overman LE, Thompson AS. J. Am. Chem. Soc. 1988; 110: 2248
    • 27c Blumenkopf TA, Look GC, Overman LE. J. Am. Chem. Soc. 1990; 112: 4399
    • 27d Saha P, Saikia AK. Org. Biomol. Chem. 2018; 16: 2810
    • 28a Ohmura H, Mikami K. Tetrahedron Lett. 2001; 42: 6859
    • 28b Mikami K, Ohmura H, Yamanaka M. J. Org. Chem. 2003; 68: 1081
    • 28c Mikami K, Ohmura H. Chem. Commun. 2002; 2626
    • 29a Loh TP, Yang J.-Y, Feng L.-C, Zhou Y. Tetrahedron Lett. 2002; 43: 1081
    • 29b Loh T.-P, Hu Q.-Y, Tan K.-T, Cheng H.-S. Org. Lett. 2001; 3: 2669
    • 29c Chen S.-L, Hu Q.-Y, Loh T.-P. Org. Lett. 2004; 6: 3365
  • 30 Grachan ML, Tudge MT, Jacobsen EN. Angew. Chem. Int. Ed. 2008; 47: 1469
  • 31 Liu L, Leutzsch M, Zheng Y, Alachraf MW, Thiel W, List B. J. Am. Chem. Soc. 2015; 137: 13268
  • 32 Trost BM, Ryan MC. J. Am. Chem. Soc. 2016; 138: 2981
    • 33a Tietze LF. Chem. Rev. 1996; 96: 115
    • 33b Yus DJ, Ramon M. Angew. Chem. Int. Ed. 2005; 44: 1602
    • 33c Dömling A, Ugi I. Angew. Chem. Int. Ed. 2000; 39: 3168
    • 33d Multicomponent Reactions Bienaymé H.; Wiley-VCH: Weinheim, 2005
  • 34 Reddy UC, Raju BR, Kumar EK. P, Saikia AK. J. Org. Chem. 2008; 73: 1628
  • 35 Reddy UC, Bondalapati S, Saikia AK. Eur. J. Org. Chem. 2009; 1625
  • 36 Reddy UC, Bondalapati S, Saikia AK. J. Org. Chem. 2009; 74: 2605
  • 37 Bondalapati S, Reddy UC, Kundu DS, Saikia AK. J. Fluorine Chem. 2010; 131: 320
  • 38 Indukuri K, Bondalapati S, Kotipalli T, Gogoi P, Saikia AK. Synlett 2012; 23: 233
  • 39 Reddy UC, Saikia AK. Synlett 2010; 1027
  • 40 Liu F, Loh T.-P. Org. Lett. 2007; 9: 2063
  • 41 Saikia AK, Ghosh P, Kautarya AK. RSC Adv. 2016; 6: 44774
  • 42 Sultana S, Indukuri K, Deka MJ, Saikia AK. J. Org. Chem. 2013; 78: 12182
  • 43 Maurer A, Grieder A, Thommen W. Helv. Chim. Acta 1979; 62: 44
  • 44 Sarkar S, Devi N, Porashar B, Ruidas S, Saikia AK. SynOpen 2019; 3: 36
  • 45 Gogoi P, Das VK, Saikia AK. J. Org. Chem. 2014; 79: 8592
  • 46 Baldwin JE. J. Chem. Soc., Chem. Commun. 1976; 738
  • 47 Baldwin JE, Thomas RC, Kruse LI, Silberman L. J. Org. Chem. 1977; 42: 3846
  • 48 Shit S, Devi N, Devi NR, Saikia AK. Org. Biomol. Chem. 2019; 17: 7398
  • 49 Indukuri K, Unnava R, Deka MJ, Saikia AK. J. Org. Chem. 2013; 78: 10629
  • 50 Saikia AK, Indukuri K, Das J. Org. Biomol. Chem. 2014; 12: 7026
  • 51 Kim G, Jung S.-D, Kim W.-J. Org. Lett. 2001; 3: 2985
  • 52 Das M, Saikia AK. J. Org. Chem. 2018; 83: 6178
  • 53 Biswas S, Porashar B, Aranadhara PJ, Saikia AK. Chem. Commun. 2021; 57: 11701
  • 54 Borah M, Gogoi P, Indukuri K, Saikia AK. J. Org. Chem. 2015; 80: 2641
  • 55 Saha P, Reddy UC, Bondalapati S, Saikia AK. Org. Lett. 2010; 12: 1824
    • 56a Saudagar P, Saha P, Saikia AK, Dubey VK. Eur. J. Pharm. Biopharm. 2013; 85: 569
    • 56b Saudagar P, Mudavath SL, Saha P, Saikia AK, Sundar S, Dubey VK. Lett. Drug Des. Discovery 2014; 11: 937
    • 56c Das M, Saha G, Saikia AK, Dubey VK. Antimicrob. Agents Chemother. 2015; 59: 7826
  • 57 Saha P, Gogoi P, Saikia AK. Org. Biomol. Chem. 2011; 9: 4626
  • 58 Sibley R, Hatoum-Mokdad H, Schoenleber R, Musza L, Stirtan W, Marreo D, Carley W, Xiao H, Dumas J. Bioorg. Med. Chem. Lett. 2003; 13: 1919
  • 59 Saha P, Saikia AK. Tetrahedron 2012; 68: 2261
  • 60 Bondalapati S, Reddy UC, Saha P, Saikia AK. Org. Biomol. Chem. 2011; 9: 3428
  • 61 Saha P, Bhunia A, Saikia AK. Org. Biomol. Chem. 2012; 10: 2470
  • 62 Saha P, Ghosh P, Sultana S, Saikia AK. Org. Biomol. Chem. 2012; 10: 8730
  • 63 Borthakur U, Biswas S, Saikia AK. ACS Omega 2019; 4: 2630
  • 64 Devi NR, Sultana S, Borah M, Saikia AK. J. Org. Chem. 2018; 83: 14987
  • 65 Bondalapati S, Indukuri K, Ghosh P, Saikia AK. Eur. J. Org. Chem. 2013; 952
  • 66 Bondalapati S, Gogoi P, Indukuri K, Saikia AK. J. Org. Chem. 2012; 77: 2508