CC BY-NC-ND 4.0 · SynOpen 2022; 06(03): 179-194
DOI: 10.1055/a-1896-4168
review

Recent Applications on Dual-Catalysis for C–C and C–X Cross-Coupling Reactions

Dakoju Ravi Kishore
,
Chinnabattigalla Sreenivasulu
,
Anil Balajirao Dapkekar
,
We greatly acknowledge financial support from the Council of Scientific and Industrial Research [(CSIR), No. 02(0262)/16/EMR-II], and DST-SERB (Science and Engineering Research Board, Department of Science and Technology, Grant EMR/2017/005312), New Delhi. D. R. and C. B. S. thank the University Grants Commission (UGC) New Delhi for providing Fellowships. A.B.D. thanks the Ministry of Human Resource Development (MHRD), for a Research Fellowship.


Dedicated to Prof. Günter Helmchen on the occasion of his 81st birthday

Abstract

Coupling reactions stand amid the most significant reactions in synthetic organic chemistry. Of late, these coupling strategies are being viewed as a versatile synthetic tool for a wide range of organic transformations in many sectors of chemistry, ranging from indispensable synthetic scaffolds and natural products of biological significance to novel organic materials. Further, the use of dual-catalysis in accomplishing various interesting cross-coupling transformations is an emerging field in synthetic organic chemistry, owing to their high catalytic performance rather than the use of a single catalyst. In recent years, synthetic organic chemists have given considerable attention to hetero-dual catalysis; wherein these catalytic systems have been employed for the construction of versatile carbon–carbon [C(sp 3)–C(sp 3), C(sp 3)–C(sp 2), C(sp 2)–C(sp 2)] and carbon–heteroatom (C–N, C–O, C–P, C–S) bonds. Therefore, in this mini-review, we are emphasizing recently developed various cross-coupling reactions catalysed by transition-metal dual-catalysis (i.e., using palladium and copper catalysts, but omitting the reports on photoredox/metal catalysis).

1 Introduction

2 Cu/Pd-Catalysed Bond Formation

2.1 Pd/Cu-Catalysed C(sp 3)–C(sp 2) Bond Formation

2.2 Pd/Cu-Catalysed C(sp 2)–C(sp 2) Bond Formation

2.3 Pd/Cu-Catalysed C(sp)–C(sp 2) Bond Formation

2.4 Pd/Cu-Catalysed C(sp 3)–C(sp 3) Bond Formation

2.5 Pd/Cu-Catalysed C–X (X = B, N, P, S, Si) Bond Formation

3 Conclusion



Publication History

Received: 16 June 2022

Accepted after revision: 11 July 2022

Accepted Manuscript online:
11 July 2022

Article published online:
03 August 2022

© 2022. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Carsten B. J. Org. Chem. 2012; 77: 5221
  • 2 Pérez Sestelo J, Sarandeses LA. Molecules 2020; 25: 4500
  • 3 Ayogu JI, Onoabedje EA. Catal. Sci. Technol. 2019; 9: 5233
  • 4 Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
  • 5 Dombrowski AW, Gesmundo NJ, Aguirre AL, Sarris KA, Young JM, Bogdan AR, Martin MC, Gedeon S, Wang Y. Med. Chem. Lett. 2020; 11: 597
  • 6 Rayadurgam J, Sana S, Sasikumar M, Gu Q. Org. Chem. Front. 2021; 8: 384
  • 7 Magano J, Dunetz JR. Chem. Rev. 2011; 111: 2177
  • 8 Hooshmand SE, Heidari B, Sedghi R, Varma RS. Green Chem. 2019; 21: 381
  • 9 Miyaura N, Yamada K, Suzuki A. Tetrahedron Lett. 1979; 20: 3437
  • 10 Farina V, Krishnamurthy V, Scott WJ. Organic Reactions, Vol. 50. John Wiley & Sons; 1997
  • 11 Cordovilla C, Bartolomé C, Martínez-Ilarduya JM, Espinet P. ACS Catal. 2015; 5: 3040
  • 12 Stille JK. Angew. Chem., Int. Ed. Engl. 1986; 25: 508
  • 13 Johansson Seechurn CC. C, Kitching MO, Colacot TJ, Snieckus V. Angew. Chem. Int. Ed. 2012; 51: 5062
  • 14 Li H, Johansson Seechurn CC. C, Colacot TJ. ACS Catal. 2012; 2: 1147
  • 15 Fleckenstein CA, Plenio H. Chem. Soc. Rev. 2010; 39: 694
  • 16 Guerrero Rios I, Rosas-Hernandez A, Martin E. Molecules 2011; 16: 970
  • 17 Surry DS, Buchwald SL. Chem. Sci. 2010; 2: 27
  • 18 Hartwig JF. Acc. Chem. Res. 2008; 41: 1534
  • 19 Fan M, Zhou W, Jiang Y, Ma D. Angew. Chem. Int. Ed. 2016; 55: 6211
  • 20 Lagishetti C, Banne S, You H, Tang M, Guo J, Qi N, He Y. Org. Lett. 2019; 21: 5301
  • 21 You H, Vegi SR, Lagishetti C, Chen S, Reddy RS, Yang X, Guo J, Wang C, He Y. J. Org. Chem. 2018; 83: 4119
  • 22 Zhou C, Ma D. Chem. Commun. 2014; 50: 3085
  • 23 Aneeja T, Neetha M, Afsina CM. A, Anilkumar G. RSC Adv. 2020; 10: 34429
  • 24 Zhou Y, Zhang Z, Jiang Y, Pan X, Ma D. Synlett 2015; 26: 1586
  • 25 Klapars A, Antilla JC, Huang X, Buchwald SL. J. Am. Chem. Soc. 2001; 123: 7727
  • 26 Hayashi Y. Chem. Sci. 2016; 7: 866
  • 27 Ramesh K, Satyanarayana G. J. Org. Chem. 2017; 82: 4254
  • 28 Ghora S, Sreenivasulu C, Satyanarayana G. Synthesis 2022; 54: 393
  • 29 Reddy AG. K, Krishna J, Satyanarayana G. ChemistrySelect 2016; 1: 1151
  • 30 Kumar DR, Panigrahy RS, Ravi Kishore D, Satyanarayana G. ChemistrySelect 2019; 4: 12111
  • 31 Beccalli EM, Broggini G, Gazzola S, Mazza A. Org. Biomol. Chem. 2014; 12: 6767
  • 32 Mateos J, Rivera-Chao E, Fañanás-Mastral M. ACS Catal. 2017; 7: 5340
  • 33 Friis SD, Pirnot MT, Dupuis LN, Buchwald SL. Angew. Chem. Int. Ed. 2017; 56: 7242
  • 34 Allen AE, MacMillan DW. C. Chem. Sci. 2012; 3: 633
  • 35 Sammis GM, Danjo H, Jacobsen EN. J. Am. Chem. Soc. 2004; 126: 9928
  • 36 Romiti F, del Pozo J, Paioti PH. S, Gonsales SA, Li X, Hartrampf FW. W, Hoveyda AH. J. Am. Chem. Soc. 2019; 141: 17952
  • 37 Kim UB, Jung DJ, Jeon HJ, Rathwell K, Lee S. Chem. Rev. 2020; 120: 13382
  • 38 Singh S, Roy VJ, Dagar N, Sen PP, Roy SR. Adv. Synth. Catal. 2021; 363: 937
  • 39 Lichosyt D, Zhang Y, Hurej K, Dydio P. Nat. Catal. 2019; 2: 114
  • 40 Wang D, Malmberg R, Pernik I, Prasad SK. K, Roemer M, Venkatesan K, Schmidt TW, Keaveney ST, Messerle BA. Chem. Sci. 2020; 11: 6256
  • 41 Gui Y.-Y, Sun L, Lu Z.-P, Yu D.-G. Org. Chem. Front. 2016; 3: 522
  • 42 Skubi KL, Blum TR, Yoon TP. Chem. Rev. 2016; 116: 10035
  • 43 Wasilke J.-C, Obrey SJ, Baker RT, Bazan GC. Chem. Rev. 2005; 105: 1001
  • 44 Mukherjee S, Biswas B. ChemistrySelect 2020; 5: 10704
  • 45 Dub PA, Gordon JC. ACS Catal. 2017; 7: 6635
  • 46 Shibasaki M, Kanai M, Matsunaga S, Kumagai N. Acc. Chem. Res. 2009; 42: 1117
  • 47 Uraguchi D, Kinoshita N, Kizu T, Ooi T. J. Am. Chem. Soc. 2015; 137: 13768
  • 48 Sun W, He C, Liu T, Duan C. Chem. Commun. 2019; 55: 3805
  • 49 Chan Y.-C, Bai Y, Chen W.-C, Chen H.-Y, Li C.-Y, Wu Y.-Y, Tseng M.-C, Yap GP. A, Zhao L, Chen H.-Y, Ong T.-G. Angew. Chem. Int. Ed. 2021; 60: 19949
  • 50 Chen G, Wang Y, Zhao J, Zhang X, Fan X. J. Org. Chem. 2021; 86: 14652
  • 51 Luo H, Li Y, Du L, Xin X, Wang T, Han J, Tian Y, Li B. Org. Lett. 2021; 23: 7883
  • 52 Li Y, Luo H, Tang Z, Li Y, Du L, Xin X, Li S, Li B. Org. Lett. 2021; 23: 6450
  • 53 Wang C, Xi Z. Chem. Soc. Rev. 2007; 36: 1395
  • 54 Clerc A, Marelli E, Adet N, Monot J, Martín-Vaca B, Bourissou D. Chem. Sci. 2021; 12: 435
  • 55 Zhong C, Shi X. Eur. J. Org. Chem. 2010; 2010: 2999
  • 56 Zhou Q.-L. Angew. Chem. Int. Ed. 2016; 55: 5352
  • 57 Du Z, Shao Z. Chem. Soc. Rev. 2013; 42: 1337
  • 58 Chen D.-F, Gong L.-Z. J. Am. Chem. Soc. 2022; 144: 2415
  • 59 Rueping M, Koenigs RM, Atodiresei I. Chem. Eur. J. 2010; 16: 9350
  • 60 Li C, Villa-Marcos B, Xiao J. J. Am. Chem. Soc. 2009; 131: 6967
  • 61 Volla CM. R, Fava E, Atodiresei I, Rueping M. Chem. Commun. 2015; 51: 15788
  • 62 Afewerki S, Córdova A. Chem. Rev. 2016; 116: 13512
  • 63 Xu M.-M, Wang H.-Q, Mao Y.-J, Mei G.-J, Wang S.-L, Shi F. J. Org. Chem. 2018; 83: 5027
  • 64 Liu H, Han Y.-F, Gao Z.-H, Zhang C.-L, Wang C, Ye S. ACS Catal. 2022; 12: 1657
  • 65 Zhang J, Gao Y.-S, Gu B.-M, Yang W.-L, Tian B.-X, Deng W.-P. ACS Catal. 2021; 11: 3810
  • 66 Ling B, Yang W, Wang Y.-E, Mao J. Org. Lett. 2020; 22: 9603
  • 67 Wang MH, Scheidt KA. Angew. Chem. Int. Ed. 2016; 55: 14912
  • 68 Cardinal-David B, Raup DE. A, Scheidt KA. J. Am. Chem. Soc. 2010; 132: 5345
  • 69 Cohen DT, Scheidt KA. Chem. Sci. 2011; 3: 53
  • 70 Singha S, Patra T, Daniliuc CG, Glorius F. J. Am. Chem. Soc. 2018; 140: 3551
  • 71 Suliman AM. Y, Ahmed E.-AM. A, Gong T.-J, Fu Y. Org. Lett. 2021; 23: 3259
  • 72 Schuppe AW, Knippel JL, Borrajo-Calleja GM, Buchwald SL. J. Am. Chem. Soc. 2021; 143: 5330
  • 73 Mateos J, Fuentes-Vara N, Fra L, Rivera-Chao E, Vázquez-Galiñanes N, Chaves-Pouso A, Fañanás-Mastral M. Organometallics 2020; 39: 740
  • 74 Piou T, Slutskyy Y, Kevin NJ, Sun Z, Xiao D, Kong J. Org. Lett. 2021; 23: 1996
  • 75 Al Mamari HH, Grošelj U, Požgan F, Brodnik H. J. Org. Chem. 2021; 86: 3138
  • 76 Li W, Tang J, Li S, Zheng X, Yuan M, Xu B, Jiang W, Fu H, Li R, Chen H. Org. Lett. 2020; 22: 7814
  • 77 Komiyama T, Minami Y, Furuya Y, Hiyama T. Angew. Chem. Int. Ed. 2018; 57: 1987
  • 78 Jeanne-Julien L, Masson G, Kouoi R, Regazzetti A, Genta-Jouve G, Gandon V, Roulland E. Org. Lett. 2019; 21: 3136
  • 79 Xue S, Lücht A, Benet-Buchholz J, Kleij AW. Chem. Eur. J. 2021; 27: 10107
  • 80 Zhang C, Wu X, Wang C, Zhang C, Qu J, Chen Y. Org. Lett. 2020; 22: 6376
  • 81 Wei W, Li X, Gu M, Yao H, Lin A. Org. Biomol. Chem. 2017; 15: 8458
  • 82 Khakyzadeh V, Rostami A, Veisi H, Shaghasemi BS, Reimhult E, Luque R, Xia Y, Darvishi S. Org. Biomol. Chem. 2019; 17: 4491
  • 83 Takeda Y, Shibuta K, Aoki S, Tohnai N, Minakata S. Chem. Sci. 2019; 10: 8642
  • 84 Yuan Y, Wu F.-P, Xu J.-X, Wu X.-F. Angew. Chem. Int. Ed. 2020; 59: 17055
  • 85 Khangarot RK, Kaliappan KP. Eur. J. Org. Chem. 2013; 2013: 7664
  • 86 Santoro S, Himo F. J. Org. Chem. 2021; 86: 10665
  • 87 Malig TC, Yu D, Hein JE. J. Am. Chem. Soc. 2018; 140: 9167
  • 88 Qi J, Wei F, Tung C.-H, Xu Z. Angew. Chem. Int. Ed. 2021; 60: 13814
  • 89 Dorn SK, Brown MK. ACS Catal. 2022; 12: 2058