Synlett 2023; 34(07): 807-814
DOI: 10.1055/a-1903-5174
cluster
Chemical Synthesis and Catalysis in India

Metal- and Solvent-Free Synthesis of m-Terphenyls by an Iodine-Catalyzed Tandem Formal [3+3]-Cycloaddition/Oxidation

Thangavel Pavithra
a   Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur-613401, India
,
Gnanaoli Karthiyayini
a   Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur-613401, India
,
Subbiah Nagarajan
b   Department of Chemistry, National Institute of Technology-Warangal, Warangal-506004, India
,
Vellaisamy Sridharan
c   Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), District-Samba, Jammu-181143, Jammu and Kashmir, India
,
C. Uma Maheswari
a   Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur-613401, India
› Author Affiliations
Financial support from the Science and Engineering Research Board (SERB) through the award of a research grant (CRG/2021/006424) is gratefully acknowledged.


Abstract

A tandem formal [3+3]-cycloaddition/oxidation between chalcones and β-enamine esters, employing iodine as a catalyst, was developed for the construction of various substituted m-terphenyls. A wide range of chalcones and β-enamine esters were tested under metal- and solvent-free conditions for the synthesis of substituted m-terphenyls in good to excellent yields in the presence of sulfur as an oxidant. This reaction proceeds with the formation of four new bonds and one new ring, with a high atom economy.

Supporting Information



Publication History

Received: 13 May 2022

Accepted after revision: 19 July 2022

Accepted Manuscript online:
19 July 2022

Article published online:
11 August 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Liu J.-K. Chem. Rev. 2006; 106: 2209
    • 1b Electronic Materials: The Oligomer Approach . Müllen K, Wegner G. Wiley-VCH; Weinhein: 1988
    • 1c Cook TR, Zheng Y.-R, Stang PJ. Chem. Rev. 2013; 113: 734
  • 2 Todd MH, Balasubramanian S, Abell C. Tetrahedron Lett. 1997; 38: 6781
  • 3 Córsico EF, Rossi RA. Synlett 2000; 230
    • 4a Udayakumar BS, Schuster GB. J. Org. Chem. 1992; 57: 348
    • 4b Wright RS, Vinod TK. Tetrahedron Lett. 2003; 44: 7129
    • 4c Liao H.-R, Lin Y.-J, Chou Y.-M, Luo F.-T, Wang B.-C. J. Lumin. 2008; 128: 1373
    • 5a Yashima E, Maeda K, Furusho Y. Acc. Chem. Res. 2008; 41: 1166
    • 5b Furusho Y, Yashima E. Chem. Rec. 2007; 7: 1
    • 5c Goto H, Furusho Y, Miwa K, Yashima E. J. Am. Chem. Soc. 2009; 131: 4710
    • 5d Yamada H, Wu Z.-Q, Furusho Y, Yashima E. J. Am. Chem. Soc. 2012; 134: 9506
  • 6 Yen Y.-S, Chen W.-T, Hsu C.-Y, Chou HH, Lin JT, Yeh M.-CP. Org. Lett. 2011; 13: 4930
    • 7a Glombitza K.-W, Rauwald H.-W, Eckhard G. Phytochemistry 1975; 14: 1403
    • 7b Kouno I, Hashimoto A, Kawano N, Yang C.-S. Chem. Pharm. Bull. 1989; 37: 1291
    • 7c Kouno I, Morisaki T, Hara Y, Yang C.-S. Chem. Pharm. Bull. 1991; 39: 2606
    • 7d Kouno I, Iwamoto C, Kameda Y, Tanaka T, Yang C.-S. Chem. Pharm. Bull. 1994; 42: 112
    • 7e Kohno H, Takaba K, Fukai T, Nomura T. Heterocycles 1987; 26: 759
    • 7f Kikuchi H, Matsuo Y, Katou Y, Kubohara Y, Oshima Y. Tetrahedron 2012; 68: 8884
    • 8a Sawayama Y, Tsujimoto T, Sugino K, Nishikawa T, Isobe M, Kawagishi H. Biosci., Biotechnol., Biochem. 2006; 70: 2998
    • 8b Cali V, Spatafora C, Tringali C. Stud. Nat. Prod. Chem. 2003; 29: 263
  • 9 Patrick DA, Ismail MA, Arafa RK, Wenzler T, Zhu X, Pandharkar T, Kilgore Jones S, Werbovetz KA, Brun R, Boykin DW, Tidwell RR. J. Med. Chem. 2013; 56: 5473
  • 10 Rajakumar P, Padmanabhan R, Rajesh N. Bioorg. Med. Chem. Lett. 2012; 22: 3770
  • 11 Samshuddin S, Narayana B, Sarojini BK, Shetty DN, Kumari NS. Int. J. Med. Chem. 2012; 530392
  • 12 Bauer JD, Foster MS, Hugdahl JD, Burns KL, May SW, Pollock SH, Cutler HG, Cutler S. J. 2007; 16: 119
    • 13a Twamley B, Haubrich ST, Power PP. Adv. Organomet. Chem. 1999; 44: 1
    • 13b Clyburne JA. C, McMullen N. Coord. Chem. Rev. 2000; 210: 73
    • 13c Kays DL, Cowley AR. Chem. Commun. 2007; 1053
    • 13d Rivard E, Power PP. Inorg. Chem. 2007; 46: 10047
    • 13e Kays DL. Organomet. Chem. 2010; 36: 56
    • 13f Kays DL. Dalton Trans. 2011; 40: 769
    • 13g Kays DL. Chem. Soc. Rev. 2016; 45: 1004
    • 13h Veinot AJ, Todd AD. K, Masuda JD. A. Angew. Chem. Int. Ed. 2017; 56: 11615
    • 14a Grimsdale AC, Müllen K. Angew. Chem. Int. Ed. 2005; 44: 5592
    • 14b Kissel P, Breitler S, Reinmüller V, Lanz P, Federer L, Schlüter AD, Sakamoto J. Eur. J. Org. Chem. 2009; 2009: 2953
    • 14c Bhalla V, Tejpal R, Kumar M, Sethi A. Inorg. Chem. 2009; 48: 11677
    • 14d Wu C.-A, Chou H.-H, Shih C.-H, Wu F.-I, Cheng C.-H, Huang H.-L, Chao T.-C, Tseng M.-R. J. Mater. Chem. 2012; 22: 17792
    • 14e Karastatiris P, Mikroyannidis JA, Spiliopoulos IK, Fakis M, Persephonis P. J. Polym. Sci., Part A: Polym. Chem. 2004; 42: 2214
    • 14f Okazawa Y, Kondo K, Akita M, Yoshizawa M. Chem. Sci. 2015; 6: 5059
    • 14g Riddle JA, Bollinger JC, Lee D. Angew. Chem. Int. Ed. 2005; 44: 6689
    • 14h Lüning U, Baumgartner H, Manthey C, Meynhardt B. J. Org. Chem. 1996; 61: 7922
    • 15a Morgan BP, Gilliard RJ. Jr, Loungani RS, Smith RC. Macromol. Rapid Commun. 2009; 30: 1399
    • 15b Annan KO, Scherf U, Mullen K. Synth. Met. 1999; 99: 9
    • 15c Vinod TK, Hart H. J. Am. Chem. Soc. 1990; 112: 3250
    • 15d Grewal RS, Hart H, Vinod TK. J. Org. Chem. 1992; 57: 2721
    • 15e Vinod TK, Hart H. J. Org. Chem. 1991; 56: 5630
    • 15f Vinod T, Hart H. J. Org. Chem. 1990; 55: 881
    • 16a Adrio LA, Antelo Miguez JM, Hii KK. Org. Prep. Proced. Int. 2009; 41: 331
    • 16b Du C.-JF, Hart H, Ng K.-KD. J. Org. Chem. 1986; 51: 3162
    • 16c Saednya A, Hart H. Synthesis 1996; 1455
    • 16d Hino S, Olmstead MM, Fettinger JC, Power PP. J. Organomet. Chem. 2005; 690: 1638
    • 16e Chang M.-Y, Lee T.-W, Lin S.-Y. Tetrahedron 2013; 69: 228
    • 16f Rottländer M, Knochel P. J. Org. Chem. 1998; 63: 203
    • 16g Rashidzadeh B, Jafarpour F, Saednya A. ARKIVOC 2008; (xvii): 167
    • 16h Antelo Míguez JM, Adrio LA, Sousa-Pedrares A, Vila JM, Hii KK. J. Org. Chem. 2007; 72: 7771
    • 18a Gopi E, Namboothiri IN. N. J. Org. Chem. 2014; 79: 7468
    • 18b Chang M.-Y, Chan C.-K, Lin S.-Y, Wu M.-H. Tetrahedron 2013; 69: 9616
    • 18c Yaragorla S, Dada R. ACS Omega 2017; 2: 4859
    • 18d Rocchi D, González JF, Gómez-Carpintero J, González-Ruiz V, Martín MA, Sridharan V, Menéndez JC. ACS Comb. Sci. 2018; 20: 722
    • 18e Xing M.-M, Xu H, Hou L.-F, Gao J.-R, Li Y.-J. RSC Adv. 2016; 6: 10943
    • 19a Pavithra T, Devi ES, Nagarajan S, Sridharan V, Uma Maheswari C. Eur. J. Org. Chem. 2019; 2019: 6884
    • 19b Pavithra T, Devi ES, Nagarajan S, Sridharan V, Uma Maheswari C. ChemistrySelect 2021; 6: 3548
    • 20a Nguyen TB, Retailleau P. J. Org. Chem. 2019; 84: 5907
    • 20b Shibahara F, Sugiura R, Yamaguchi E, Kitagawa A, Murai T. J. Org. Chem. 2009; 74: 3566
    • 20c Wang Z, Chen X, Xie H, Wang D, Huang H, Deng G.-J. Org. Lett. 2018; 20: 5470
    • 21a Nguyen TB, Nguyen LA, Retailleau P. Org. Lett. 2019; 21: 6570
    • 21b Wang Z, Li C, Huang H, Deng G.-J. J. Org. Chem. 2020; 85: 9415
    • 21c Nguyen TB, Retailleau P. Adv. Synth. Catal. 2019; 361: 3588
    • 22a von der Heiden D, Bozkus S, Klussmann M, Breugst M. J. Org. Chem. 2017; 82: 4037
    • 22b Revannath L, Sutar Sutar, Huber SM. ACS Catal. 2019; 9: 9622
    • 23a Finkbeiner P, Nachtsheim BJ. Synthesis 2013; 45: 979
    • 23b Zhang Z, Liu Q. Huaxue Jinzhan 2006; 18: 270
    • 23c Banerjee AK, Vera W, Mora H, Laya MS, Bedoya L, Cabrera EV. J. Sci. Ind. Res. 2006; 65: 299
    • 23d Wang S.-Y. Synlett 2004; 2642
    • 23e Zhang J, Wu X, Gao Q, Geng X, Zhao P, Wu Y.-D, Wu A. Org. Lett. 2017; 19: 408
    • 23f Naresh G, Kant R, Narender T. J. Org. Chem. 2014; 79: 3821
    • 23g Lv Z, Liu J, Wei W, Wu J, Yu W, Chang J. Adv. Synth. Catal. 2016; 358: 2759
    • 23h Cui H, Liu X, Wei W, Yang D, He C, Zhang T, Wang H. J. Org. Chem. 2016; 81: 2252
    • 23i Jadhav PM, Rode AB, Kótai L, Pawar RP, Tekale SU. New J. Chem. 2021; 45: 16389
    • 24a Ge W, Zhu X, Wei Y. RSC Adv. 2013; 3: 10817
    • 24b Koenig JJ, Arndt T, Gildemeister N, Neudörfl J.-M, Breugst M. J. Org. Chem. 2019; 84: 7587
    • 24c Silva LF. Jr, Quintiliano SA. Tetrahedron Lett. 2009; 50: 2256
    • 24d Yadav JS, Reddy BV. S, Kumar GG. K. S. N, Swamy T. Tetrahedron Lett. 2007; 48: 2205
    • 24e Yadav JS, Reddy BV. S, Krishna VH, Swamy T, Kumar GG. K. S. Can. J. Chem. 2007; 85: 412
    • 24f Yadav JS, Reddy BV. S, Chaya DN, Kumar GG. K. S. N, Aravind S, Kunwar AC, Madavi C. Tetrahedron Lett. 2008; 49: 3330
    • 24g Knight DW. Prog. Heterocycl. Chem. 2002; 14: 19
    • 24h Sun J, Dong Y, Cao L, Wang X, Wang S, Hu Y. J. Org. Chem. 2004; 69: 8932
    • 24i Bosco JW. J, Agrahari A, Saikia AK. Tetrahedron Lett. 2006; 47: 4065
    • 24j Marsili LA, Pergomet JL, Gandon V, Riveira MJ. Org. Lett. 2018; 20: 7298
    • 24k Aegurla B, Jarwal N, Peddinti RK. Org. Biomol. Chem. 2020; 18: 6100
  • 25 Zhang H, Cai Q, Ma D. J. Org. Chem. 2005; 70: 5164
  • 26 Qian Q, Tan Y, Zhao B, Feng T, Shen Q, Yao Y. Org. Lett. 2014, 16 4516. m-Terphenyls 3au; General Procedure A mixture of the appropriate α,β-unsaturated carbonyl compound (1.0 mmol) and β-enaminone (1.5 mmol) with I2 (10 mol%) and elemental sulfur (1.0 equiv) in a reaction vial was stirred at 120 °C until the reaction was complete (TLC). H2O was then added and the mixture was extracted with EtOAc. The extracts were washed with brine, dried (Na2SO4), and concentrated under vacuum to give a crude product that was purified by column chromatography [silica gel, hexane–EtOAc (95:5)]. Ethyl 5′-(Butylamino)-4-methoxy-[1,1′:3′,1′′-terphenyl]-4′-carboxylate (3b) Yellow solid; yield: 330 mg (82%); mp 112–115 °C. 1H NMR (600 MHz, CDCl3): δ = 7.62–7.60 (m, 2 H), 7.44–7.41 (m, 2 H), 7.37–7.34 (m, 1 H), 7.26–7.25 (m, 1 H), 7.24–7.24 (m, 1 H), 6.91–6.89 (m, 2 H), 6.82–6.79 (m, 2 H), 6.38 (s, 1 H), 3.91 (q, J = 7.2 Hz, 2 H), 3.83 (s, 3 H), 3.23 (q, J = 7.2 Hz, 2 H), 1.69 (quin, J = 7.2 Hz, 2 H), 1.47 (sextet, J = 7.2 Hz, 2 H), 0.97 (t, J = 7.2 Hz, 3 H), 0.77 (t, J = 7.2 Hz, 3 H). 13C NMR (150 MHz, CDCl3): δ = 170.2, 158.8, 149.5, 144.8, 144.5, 141.2, 136.4, 129.2, 128.8, 127.9, 127.4, 117.5, 113.5, 112.3, 108.5, 60.4, 55.5, 43.3, 31.5, 20.4, 14.0, 13.5. HRMS (ESI): m/z [M + H]+ calcd for C26H30NO3: 404.21; found: 404.21. Ethyl 3-(Butylamino)-5-(1-naphthyl)biphenyl-2-carboxylate (3c) Yellow solid; yield: 313 mg (74%); mp 71–74 °C. 1H NMR (600 MHz, CDCl3): δ = 8.07 (s, 1 H), 7.90–7.85 (m, 3 H), 7.76 (dd, J = 1.8, 7.2 Hz, 1 H), 7.50–7.48 (m, 2 H), 7.37–7.32 (m, 5 H), 6.98 (d, J = 1.2 Hz, 1 H), 6.95 (d, J = 1.2 Hz, 1 H), 6.57 (br s, 1 H), 3.88 (q, J = 7.2 Hz, 2 H), 3.29 (q, J = 7.2 Hz, 2 H), 1.72 (quin, J = 7.2 Hz, 2 H), 1.50 (sextet, J = 7.2 Hz, 2 H), 0.989 (t, J = 7.2 Hz, 3 H), 0.699 (t, J = 7.2 Hz, 3 H). 13C NMR (150 MHz, CDCl3): δ = 170.1, 149.9, 145.3, 144.8, 144.1, 138.4, 133.7, 133.1, 128.5, 128.4, 128.1, 128.0, 127.8, 126.8, 126.5, 126.2, 125.6, 117.7, 111.9, 109.0, 60.4, 43.3, 31.5, 20.5, 14.1, 13.2. HRMS (ESI): m/z [M + H]+ calcd for C29H30NO2: 424.21; found: 424.21