CC BY-NC-ND 4.0 · SynOpen 2022; 06(04): 286-305
DOI: 10.1055/a-1929-9789
Graphical Review

Transition-Metal-Catalyzed Remote C–H Bond Functionalization of Cyclic Amines

Weijie Chen
a   School of Chemical Science and Engineering, Tongji University, 1239 Siping Rd, Shanghai 200092, P. R. of China
b   Institute for Advanced Studies, Tongji University, 1239 Siping Rd, Shanghai 200092, P. R. of China
,
Xiaoyu Yang
a   School of Chemical Science and Engineering, Tongji University, 1239 Siping Rd, Shanghai 200092, P. R. of China
,
Xi Cao
a   School of Chemical Science and Engineering, Tongji University, 1239 Siping Rd, Shanghai 200092, P. R. of China
› Author Affiliations
Financial support from the National Natural Science Foundation of China (NSFC) (Grant no. 22101206) and the Fundamental Research Funds for the Central Universities (Grant no. 22120220087) is gratefully acknowledged.


Abstract

C–H bond functionalization is one of the most effective strategies for the rapid synthesis of cyclic amines containing substituents on the ring, which are core structures of many bioactive molecules. However, it is much more challenging to perform this strategy on remote C–H bonds compared to the α-C–H bonds of cyclic amines. This graphical review aims to provide a concise overview on transition-metal-catalyzed methods for the remote C–H bond functionalization of cyclic amines. Examples are categorized and demonstrated according to mechanistic pathways that initiate the reactions of cyclic amine substrates. Where relevant, selected substrate scope and detailed reaction mechanisms are given.



Publication History

Received: 09 August 2022

Accepted after revision: 23 August 2022

Accepted Manuscript online:
24 August 2022

Article published online:
24 October 2022

© 2022. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Perrone R, Bettoni G, Tortorella V. Synthesis 1976; 598
    • 1b Petride H, Drãghici C, Florea C, Petride A. Cent. Eur. J. Chem. 2004; 2: 302
    • 1c Petride H, Drăghici C, Florea C, Petride A. Cent. Eur. J. Chem. 2006; 4: 674
    • 1d Lancefield CS, Zhou L, Lébl T, Slawin AM. Z, Westwood NJ. Org. Lett. 2012; 14: 6166
    • 1e Fujii H, Ogawa R, Jinbo E, Tsumura S, Nemoto T, Nagase H. Synlett 2009; 2341
    • 1f Dutta S, Li B, Rickertson DR. L, Valles DA, Seidel D. SynOpen 2021; 5: 173
    • 1g Jazzar R, Hitce J, Renaudat A, Sofack-Kreutzer J, Baudoin O. Chem. Eur. J. 2010; 16: 2654
    • 1h Ye Z, Gettys KE, Dai M. Beilstein J. Org. Chem. 2016; 12: 702
    • 1i Antermite D, Bull JA. Synthesis 2019; 51: 3171
    • 1j Kapoor M, Singh A, Sharma K, Hsu MH. Adv. Synth. Catal. 2020; 362: 4513
    • 1k Trowbridge A, Walton SM, Gaunt MJ. Chem. Rev. 2020; 120: 2613
    • 1l Ohno S, Miyoshi M, Murai K, Arisawa M. Synthesis 2021; 53: 2947
    • 1m He Y, Zheng Z, Yang J, Zhang X, Fan X. Org. Chem. Front. 2021; 8: 4582
    • 1n Caplin MJ, Foley DJ. Chem. Sci. 2021; 12: 4646
    • 2a Xia X.-F, Shu X.-Z, Ji K.-G, Yang Y.-F, Shaukat A, Liu X.-Y, Liang Y.-M. J. Org. Chem. 2010; 75: 2893
    • 2b Anguille S, Brunet J.-J, Chu NC, Diallo O, Pages C, Vincendeau S. Organometallics 2006; 25: 2943
    • 2c He Y, Wang F, Zhang X, Fan X. Chem. Commun. 2017; 53: 4002
    • 2d He Y, Zheng Z, Liu Q, Zhang X, Fan X. Org. Lett. 2020; 22: 9053
    • 3a Sundararaju B, Tang Z, Achard M, Sharma GV. M, Toupet L, Bruneau C. Adv. Synth. Catal. 2010; 352: 3141
    • 3b Sundararaju B, Achard M, Sharma GV. M, Bruneau C. J. Am. Chem. Soc. 2011; 133: 10340
    • 3c Sahli Z, Sundararaju B, Achard M, Bruneau C. Green. Chem. 2013; 15: 775
    • 3d Boudiar T, Sahli Z, Sundararaju B, Achard M, Kabouche Z, Doucet H, Bruneau C. J. Org. Chem. 2012; 77: 3674
    • 3e Murugesh V, Sahoo AR, Achard M, Sharma GV. M, Bruneau C, Suresh S. Adv. Synth. Catal. 2021; 363: 453
    • 3f Özdemir İ, Düşünceli SD, Kaloğlu N, Achard M, Bruneau C. J. Organomet. Chem. 2015; 799–800: 311
    • 3g Şahin Z, Gürbüz N, Özdemir İ, Şahin O, Büyükgüngör O, Achard M, Bruneau C. Organometallics 2015; 34: 2296
    • 3h Ulu ÖD, Gürbüz N, Özdemir İ. Tetrahedron 2018; 74: 645
    • 3i Kaloğlu N. Tetrahedron 2019; 75: 2265
    • 4a Jiang F, Achard M, Bruneau C. Chem. Eur. J. 2015; 21: 14319
    • 4b Murugesh V, Bruneau C, Achard M, Sahoo AR, Sharma GV. M, Suresh S. Chem. Commun. 2017; 53: 10448
    • 4c Tan Z, Jiang H, Zhang M. Org. Lett. 2016; 18: 3174
    • 4d Shimbayashi T, Fujita K. Tetrahedron 2020; 76: 130946
    • 4e Zhang Y, Wang J, Zhou F, Liu J. Catal. Sci. Technol. 2021; 11: 3990
    • 4f Bera A, Bera S, Banerjee D. Chem. Commun. 2021; 57: 13042
    • 4g Tan KC, He T, Chua YS, Chen P. J. Phys. Chem. C 2021; 125: 18553
    • 4h Tan Z, Jiang H, Zhang M. Chem. Commun. 2016; 52: 9359
    • 4i Maji M, Borthakur I, Srivastava S, Kundu S. J. Org. Chem. 2022; 87: 5603
    • 5a Huang Y.-Z, Zhou Q.-L. J. Org. Chem. 1987; 52: 3552
    • 5b Takasu N, Oisaki K, Kanai M. Org. Lett. 2013; 15: 1918
    • 5c Shi X, He Y, Zhang X, Fan X. Adv. Synth. Catal. 2018; 360: 261
    • 5d He Y, Yang J, Liu Q, Zhang X, Fan X. J. Org. Chem. 2020; 85: 15600
    • 6a Genovino J, Lütz S, Sames D, Touré BB. J. Am. Chem. Soc. 2013; 135: 12346
    • 6b Wang F, Zhang X, He Y, Fan X. Tetrahedron Lett. 2019; 60: 151155
    • 6c Zhou M.-J, Zhu S.-F, Zhou Q.-L. Chem. Commun. 2017; 53: 8770
    • 6d Shi X, Chen X, Wang M, Zhang X, Fan X. J. Org. Chem. 2018; 83: 6524
    • 6e Wang F, Zhang X, He Y, Fan X. J. Org. Chem. 2020; 85: 2220
    • 7a Muralirajan K, Kancherla R, Rueping M. Angew. Chem. Int. Ed. 2018; 57: 14787
    • 7b Wang F, Liu X, Wang L. Org. Biomol. Chem. 2021; 19: 6141
    • 7c Xu G.-Q, Xu J.-T, Feng Z.-T, Liang H, Wang Z.-Y, Qin Y, Xu P.-F. Angew. Chem. Int. Ed. 2018; 57: 5110
    • 7d Jia Z, Yang Q, Zhang L, Luo S. ACS Catal. 2019; 9: 3589
    • 7e An X.-D, Yang S, Qiu B, Yang T.-T, Li X.-J, Xiao J. J. Org. Chem. 2020; 85: 9558
    • 8a Chuentragool P, Parasram M, Shi Y, Gevorgyan V. J. Am. Chem. Soc. 2018; 140: 2465
    • 8b Huang L, Bismuto A, Rath SA, Trapp N, Morandi B. Angew. Chem. Int. Ed. 2021; 60: 7290
    • 8c Yu W.-L, Ren Z.-G, Ma K.-X, Yang H.-Q, Yang J.-J, Zheng H, Wu W, Xu P.-F. Chem. Sci. 2022; 13: 7947
    • 8d Wang C, Azofra LM, Dam P, Sebek M, Steinfeldt N, Rabeah J, El-Sepelgy O. ACS Catal. 2022; 12: 8868
    • 9a Li G, Kates PA, Dilger AK, Cheng PT, Ewing WR, Groves JT. ACS Catal. 2019; 9: 9513
    • 9b Holmberg-Douglas N, Choi Y, Aquila B, Huynh H, Nicewicz DA. ACS Catal. 2021; 11: 3153
    • 9c Hering T, Slanina T, Hancock A, Wille U, König B. Chem. Commun. 2015; 51: 6568
    • 9d Romero NA, Nicewicz DA. J. Am. Chem. Soc. 2014; 136: 17024
    • 10a Schultz DM, Lévesque F, DiRocco DA, Reibarkh M, Ji Y, Joyce LA, Dropinski JF, Sheng H, Sherry BD, Davies IW. Angew. Chem. Int. Ed. 2017; 56: 15274
    • 10b Perry IB, Brewer TF, Sarver PJ, Schultz DM, DiRocco DA, MacMillan DW. C. Nature 2018; 560: 70
    • 10c Sarver PJ, Bacauanu V, Schultz DM, DiRocco DA, Lam Y, Sherer EC, MacMillan DW. C. Nat. Chem. 2020; 12: 459
    • 10d Sarver PJ, Bissonnette NB, MacMillan DW. C. J. Am. Chem. Soc. 2021; 143: 9737
    • 11a Ishii Y, Chatani N, Kakiuchi F, Murai S. Organometallics 1997; 16: 3615
    • 11b Ishii Y, Chatani N, Kakiuchi F, Murai S. Tetrahedron Lett. 1997; 38: 7565
    • 11c Bolig AD, Brookhart M. J. Am. Chem. Soc. 2007; 129: 14544
    • 11d Hung-Low F, Krogman JP, Tye JW, Bradley CA. Chem. Commun. 2012; 48: 368
    • 11e Seel S, Thaler T, Takatsu K, Zhang C, Zipse H, Straub BF, Mayer P, Knochel P. J. Am. Chem. Soc. 2011; 133: 4774
    • 11f Millet A, Larini P, Clot E, Baudoin O. Chem. Sci. 2013; 2: 2241
    • 11g Lin W, Zhang K.-F, Baudoin O. Nat. Catal. 2019; 2: 882
    • 12a Bheeter CB, Jin R, Bera JK, Dixneuf PH, Doucet H. Adv. Synth. Catal. 2014; 356: 119
    • 12b Roque JB, Kuroda Y, Jurczyk J, Xu L.-P, Ham JS, Göttemann LT, Roberts CA, Adpressa D, Saurí J, Joyce LA, Musaev DG, Yeung CS, Sarpong R. ACS Catal. 2020; 10: 2929
    • 12c Xu L.-P, Roque JB, Sarpong R, Musaev DG. J. Am. Chem. Soc. 2020; 142: 21140
    • 13a Zhang S.-Y, Li Q, He G, Nack WA, Chen G. J. Am. Chem. Soc. 2013; 135: 12135
    • 13b Affron DP, Davis OA, Bull JA. Org. Lett. 2014; 16: 4956
    • 13c Feng R, Wang B, Liu Y, Liu Z, Zhang Y. Eur. J. Org. Chem. 2015; 142
    • 13d Zhu Q, Ji D, Liang T, Wang X, Xu Y. Org. Lett. 2015; 17: 3798
    • 13e Affron DP, Bull JA. Eur. J. Org. Chem. 2016; 139
    • 13f Yu Q.-Y, Zhong H.-M, Sun W.-W, Zhang S.-J, Cao P, Dong X.-P, Qin H.-B, Liu J.-K, Wu B. Asian J. Org. Chem. 2016; 5: 608
    • 13g Maetani M, Zoller J, Melillo B, Verho O, Kato N, Pu J, Comer E, Schreiber SL. J. Am. Chem. Soc. 2017; 139: 11300
    • 13h Hutskalova V, Mykhailiuk PK. Org. Biomol. Chem. 2019; 17: 4342
    • 13i Sun W.-W, Cao P, Mei R.-Q, Li Y, Ma Y.-L, Wu B. Org. Lett. 2014; 16: 480
    • 13j Zhang S.-J, Sun W.-W, Cao P, Dong X.-P, Liu J.-K, Wu B. J. Org. Chem. 2016; 81: 956
    • 13k Mondal B, Roy B, Kazmaier U. J. Org. Chem. 2016; 81: 11646
    • 13l Zhang S.-J, Sun W.-W, Yu Q.-Y, Cao P, Dong X.-P, Wu B. Tetrahedron Lett. 2017; 58: 606
    • 13m Ye S, Yang W, Coon T, Fanning D, Neubert T, Stamos D, Yu J.-Q. Chem. Eur. J. 2016; 22: 4748
    • 13n Miao J, Yang K, Kurek M, Ge H. Org. Lett. 2015; 17: 3738
    • 13o Steijvoort BF. V, Kaval N, Kulago AA, Maes BU. W. ACS Catal. 2016; 6: 4486
    • 13p O’Donovan DH, Aillard P, Berger M, de la Torre A, Petkova D, Knittl-Frank C, Geerdink D, Kaiser M, Maulide N. Angew. Chem. Int. Ed. 2018; 57: 10737
    • 13q Biswas S, Van Steijvoort BF, Waeterschoot M, Bheemireddy NR, Evano G, Maes BU. W. Angew. Chem. Int. Ed. 2021; 60: 21988
    • 13r Antermite D, Affron DP, Bull JA. Org. Lett. 2018; 20: 3948
    • 13s Xia G, Zhuang Z, Liu L.-Y, Schreiber SL, Melillo B, Yu J.-Q. Angew. Chem. Int. Ed. 2020; 59: 7783
    • 13t Piticari A.-S, Antermite D, Higham JI, Moore JH, Webster MP, Bull JA. Adv. Synth. Catal. 2022; 364: 1488
    • 14a Topczewski JJ, Cabrera PJ, Saper NI, Sanford MS. Nature 2016; 531: 220
    • 14b Lee M, Adams A, Cox PB, Sanford MS. Synlett 2019; 30: 417
    • 14c Dewyer AL, Zimmerman PM. ACS Catal. 2017; 7: 5466
    • 14d Aguilera EY, Sanford MS. Organometallics 2019; 38: 138
    • 15a Cabrera PJ, Lee M, Sanford MS. J. Am. Chem. Soc. 2018; 140: 5599
    • 15b Li Z, Dechantsreiter M, Dandapani S. J. Org. Chem. 2020; 85: 6747
    • 15c Aguilera EY, Sanford MS. Angew. Chem. Int. Ed. 2021; 60: 11227
    • 16a Fiori KW, Du Bois J. J. Am. Chem. Soc. 2007; 129: 562
    • 16b Oeschger R, Su B, Yu I, Ehinger C, Romero E, He S, Hartwig J. Science 2020; 368: 736
    • 16c Liu W, Babl T, Röther A, Reiser O, Davies HM. L. Chem. Eur. J. 2020; 26: 4236